- groebner
- groebner-bases
- GroebnerBasis
- GroebnerBasisUnreduced
- gross
- Grossen
- grossen
- grossen-char-cyclo5
- grossen-cyclo8
- grossen-ec
- grossen-large-gamma
- grossenchar-and-ec
- grossenchar-embedding
- grossenchar-gaussian
- grossenchar-sqrt23
- grossenchar-symcubed-sqrt59
- Grossencharacter
- GrossenTwist
- Grotzch
- Ground
- GroundField
- Group
- Symmetric Group Character (SYMMETRIC FUNCTIONS)
- A`DefiningGroup : FldAb -> Rec
- AbelianGroup(GrpAb, Q) : Cat, [ RngIntElt ] -> GrpAb
- AbelianGroup(C, Q) : Cat, [ RngIntElt ] -> GrpFin
- AbelianGroup(GrpPerm, Q) : Cat, [ RngIntElt ] -> GrpPerm
- AbelianGroup(GrpGPC, Q) : Cat, [RngIntElt] -> GrpGPC
- AbelianGroup(GrpPC, Q) : Cat, [RngIntElt] -> GrpPC
- AbelianGroup(G) : Grp -> GrpAb, Hom
- AbelianGroup(G) : GrpDrch -> GrpAb, Map
- AbelianGroup(G) : GrpGPC -> GrpAb, Map
- AbelianGroup(G) : GrpPC -> GrpAb, Map
- AbelianGroup(J) : JacHyp -> GrpAb, Map
- AbelianGroup< X | R > : List(Var), List(GrpAbRel) -> GrpAb, Hom(GrpAb)
- AbelianGroup(G) : ModAbVarSubGrp -> GrpAb, Map, Map
- AbelianGroup(A: parameters) : GrpAbGen -> GrpAb, Map
- AbelianGroup(H) : SetPtEll -> GrpAb, Map
- AbelianGroup([n1,...,nr]): [ RngIntElt ] -> GrpAb
- AbsoluteGaloisGroup(A) : FldAb -> GrpPerm, SeqEnum, GaloisData
- ActingGroup(A) : GGrp -> Grp
- ActingGroup(G) : GrpLie -> Grp, Map
- ActionGroup(M) : ModGrp -> GrpMat
- AddGroupRelations(Q, R) : L2Quotient, [ GrpFPElt ] -> [ L2Quotient ]
- AddGroupRelations(Q, r) : L2Quotient, [ GrpFPElt ] -> [ L2Quotient ]
- AdditiveGroup(F) : FldFin -> GrpAb, Map
- AdditiveGroup(Z) : RngInt -> GrpAb, Map
- AdditiveGroup(R) : RngIntRes -> GrpAb, Map
- AdditiveGroup(R) : RngPadRes -> GrpAb, Map
- AdjointChevalleyGroup(t,r,q) : MonStgElt,RngIntElt,RngIntElt -> GrpMat
- AffineGammaLinearGroup(arguments)
- AffineGeneralLinearGroup(arguments)
- AffineGeneralLinearGroup(GrpMat, n, q) : Cat, RngIntElt, RngIntElt -> GrpMat
- AffineGeneralLinearGroup(E) : GrpPerm -> GrpPerm
- AffineGroup(M) : GrpMat[FldFin] -> GrpPerm, { at ModTupFldElt atbrace
- AffineGroup(N) : Nfd -> GrpMat
- AffineSigmaLinearGroup(arguments)
- AffineSigmaSymplecticGroup(arguments)
- AffineSpecialLinearGroup(arguments)
- AffineSpecialLinearGroup(GrpMat, n, q) : Cat, RngIntElt, RngIntElt -> GrpMat
- AffineSymplecticGroup(arguments)
- AlmostSimpleGroupDatabase() : -> DB
- AlternatingGroup(C, n) : Cat, RngIntElt -> GrpFin
- AlternatingGroup(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
- ApproximateByTorsionGroup(G : parameters) : ModAbVarSubGrp -> ModAbVarSubGrp
- ArithmeticTriangleGroup(p,q,r) : RngIntElt, RngIntElt, RngIntElt -> GrpPSL2, Rng
- AutomaticGroup(F: parameters) : GrpFP -> GrpAtc
- AutomaticGroup(F: parameters) : GrpFP -> GrpAtc
- AutomaticGroup(i) : RngIntElt -> GrpAtc
- AutomaticGroupIndices() : -> [RngIntElt]
- AutomaticGroupNames() : -> [MonStgElt]
- AutomorphismGroup(A) : AlgBas -> GrpMat, SeqEnum, SeqEnum, SeqEnum
- AutomorphismGroup(C) : CodeAdd -> GrpPerm
- AutomorphismGroup(Q) : CodeQuantum -> GrpPerm
- AutomorphismGroup(C) : Crv -> GrpAutCrv
- AutomorphismGroup(C,auts) : Crv, SeqEnum -> GrpAutCrv
- AutomorphismGroup(E) : CrvEll -> Grp, Map
- AutomorphismGroup(C) : CrvHyp -> GrpPerm, Map, Map
- AutomorphismGroup(A) : FldAb -> GrpFP, [Map], Map
- AutomorphismGroup(F) : FldAlg -> GrpPerm, PowMap, Map
- AutomorphismGroup(K, F) : FldAlg, FldAlg -> GrpPerm, PowMap, Map
- AutomorphismGroup(K, k) : FldFin, FldFin -> GrpPerm, [Map], Map
- AutomorphismGroup(K, k) : FldFun, FldFunG -> GrpFP, Map
- AutomorphismGroup(K) : FldFunG -> GrpFP, Map
- AutomorphismGroup(K,f) : FldFunG, Map -> Grp, Map, SeqEnum
- AutomorphismGroup(Q) : FldRat -> GrpPerm, PowMapAut, Map
- AutomorphismGroup(G): Grp -> GrpAuto
- AutomorphismGroup(G, Q, I): Grp, SeqEnum[GrpElt], SeqEnum[SeqEnum[GrpElt]] -> GrpAuto
- AutomorphismGroup(G) : GrpAb -> GrpAuto
- AutomorphismGroup(F) : GrpFP -> GrpAuto
- AutomorphismGroup(G) : GrpLie -> GrpLieAuto
- AutomorphismGroup(G): GrpPC -> GrpAuto
- AutomorphismGroup(D) : Inc -> GrpPerm, GSet, GSet, PowMap, Map
- AutomorphismGroup(D) : IncGeom -> GrpPerm
- AutomorphismGroup(L) : Lat -> GrpMat
- AutomorphismGroup(L, F) : Lat, [ AlgMatElt ] -> GrpMat
- AutomorphismGroup(L) : LatNF -> GrpMat
- AutomorphismGroup(L, v) : LatNF, LatNFElt -> GrpMat, GrpMat
- AutomorphismGroup(M) : ModRng -> GrpMat
- AutomorphismGroup(G) : Mtrx[RngUPol] -> GrpMat, FldFin
- AutomorphismGroup(N) : NfdDck -> GrpPerm, Map
- AutomorphismGroup(C: parameters) : Code -> GrpPerm, PowMap, Map
- AutomorphismGroup(G : parameters) : Grph -> GrpPerm, GSet, GSet, PowMap, Map, Grph
- AutomorphismGroup(G: parameters) : GrpMat -> GrpAuto
- AutomorphismGroup(G: parameters) : GrpPerm -> GrpAuto
- AutomorphismGroup(M : parameters) : Mtrx -> GrpPerm
- AutomorphismGroup(G: parameters): GrpPC -> GrpAuto
- AutomorphismGroup(P) : Prj -> GrpMat,Map
- AutomorphismGroup(L) : RngLocA -> Grp, Map
- AutomorphismGroup(L) : RngPad -> GrpPerm, Map
- AutomorphismGroup(K, k) : RngPad, RngPad -> GrpPerm, Map
- AutomorphismGroup(P) : TorPol -> GrpMat
- AutomorphismGroup(F) : [ AlgMatElt ] -> GrpMat
- AutomorphismGroupMatchingIdempotents(A) : AlgBas -> AlgBas, ModMatFldElt
- AutomorphismGroupOfHyperellipticCurve(X) : CrvHyp -> GrpPerm, Map
- AutomorphismGroupOfHyperellipticCurve(X, Autos) : CrvHyp, List -> GrpPerm, Map
- AutomorphismGroupOfPlaneQuartic(X, Autos) : CrvPln , SeqEnum -> GrpPerm, Map
- AutomorphismGroupOfPlaneQuartic(X) : CrvPln -> GrpPerm, Map
- AutomorphismGroupOverCyclotomicExtension(CN,N,n): Crv, RngIntElt, RngIntElt -> GrpAutCrv
- AutomorphismGroupOverExtension(CN,N,n,u): Crv, RngIntElt, RngIntElt, RngElt -> GrpAutCrv
- AutomorphismGroupOverQ(CN,N): Crv, RngIntElt -> GrpAutCrv
- AutomorphismGroupSimpleGroup(type, d, q) : MonStgElt, RngIntElt, RngIntElt -> GrpPerm
- AutomorphismGroupSolubleGroup(G: parameters): GrpPC -> GrpAuto
- AutomorphismGroupStabilizer(C, k) : Code, RngIntElt -> GrpPerm, PowMap, Map
- AutomorphismGroupStabilizer(D, k) : Inc, RngIntElt -> GrpPerm, PowMap, Map
- BasicAlgebraFromGroup(A, p, b) : MonStgElt, RngIntElt, RngIntElt -> AlgBas
- BasicAlgebraGroupNames() : -> SetIndx
- BasicAlgebraOfGroupAlgebra(G,F): GrpPerm, FldFin -> AlgBas
- BlockGroup(D) : Inc -> GrpPerm
- BraidGroup(W) : GrpFPCox -> GrpFP, Map
- BraidGroup(n: parameters) : RngIntElt -> GrpBrd
- BravaisGroup(G) : GrpMat[RngInt] -> GrpMat
- CanIdentifyGroup(o) : RngIntElt -> BoolElt
- CentralCollineationGroup(P, l) : Plane, PlaneLn -> GrpPerm, PowMap, Map
- CentralCollineationGroup(P, p) : Plane, PlanePt -> GrpPerm, PowMap, Map
- CentralCollineationGroup(P, p, l) : Plane, PlanePt, PlaneLn -> GrpPerm, PowMap, Map
- ChevalleyGroup(X, n, K: parameters) : MonStgElt, RngIntElt, FldFin -> GrpMat
- ClassGroup(C) : Crv[FldFin] -> GrpAb, Map, Map
- ClassGroup(K) : FldQuad -> GrpAb, Map
- ClassGroup(Q) : FldRat -> GrpAb, Map
- ClassGroup(F : parameters) : FldFun -> GrpAb, Map, Map
- ClassGroup(F : parameters) : FldFunG -> GrpAb, Map, Map
- ClassGroup(Q: parameters) : QuadBin -> GrpAb, Map
- ClassGroup(O: parameters) : RngOrd -> GrpAb, Map
- ClassGroup(O) : RngFunOrd -> GrpAb, Map, Map
- ClassGroup(Z) : RngInt -> GrpAb, Map
- ClassGroupAbelianInvariants(C) : Crv[FldFin] -> [RngIntElt]
- ClassGroupAbelianInvariants(F : parameters) : FldFun -> SeqEnum
- ClassGroupAbelianInvariants(F : parameters) : FldFunG -> SeqEnum
- ClassGroupAbelianInvariants(O) : RngFunOrd -> SeqEnum
- ClassGroupCyclicFactorGenerators(O) : RngOrd -> ModHomElt
- ClassGroupExactSequence(F) : FldFunG -> Map, Map, Map
- ClassGroupExactSequence(O) : RngFunOrd -> Map, Map, Map
- ClassGroupGenerationBound(F) : FldFunG -> RngIntElt
- ClassGroupGenerationBound(q, g) : RngIntElt, RngIntElt -> RngIntElt
- ClassGroupGetUseMemory(O) : RngOrd -> BoolElt
- ClassGroupPRank(C) : Crv[FldFin] -> RngIntElt
- ClassGroupPRank(F) : FldFunG -> RngIntElt
- ClassGroupPRank(F) : FldFunG -> RngIntElt
- ClassGroupPrimeRepresentatives(O, I) : RngOrd, RngOrdIdl -> Map
- ClassGroupStructure(Q: parameters) : QuadBin -> [ RngIntElt ]
- ClassicalGroupType(G) : GrpMat -> BoolElt, MonStgElt
- CohomologyGroup(CM, n) : ModCoho, RngIntElt -> ModTupRng
- CohomologyGroup(CM, n) : ModCoho, RngIntElt -> ModTupRng
- CoisogenyGroup(G) : GrpLie -> GrpAb, Map
- CoisogenyGroup(W) : GrpMat -> GrpAb, Map
- CoisogenyGroup(W) : GrpPermCox -> GrpAb
- CoisogenyGroup(R) : RootDtm -> GrpAb, Map
- CollineationGroup(P) : Plane -> GrpPerm, GSet, GSet, PowMap, Map
- CollineationGroupStabilizer(P, k) : Plane, RngIntElt -> GrpPerm, GSet, GSet, PowMap, Map
- CommutatorSubgroup(G) : GrpAb -> GrpAb
- CommutatorSubgroup(G) : GrpFP -> GrpFP
- CommutatorSubgroup(G) : GrpMat -> GrpMat
- CommutatorSubgroup(G) : GrpPC -> GrpPC
- CommutatorSubgroup(G) : GrpPerm -> GrpPerm
- ComplexReflectionGroup(X, n) : MonStgElt, RngIntElt -> GrpMat, Map
- ComplexReflectionGroup(C) : Mtrx -> GrpMat, Map
- ComponentGroup(M) : CrvRegModel -> GrpAb
- ComponentGroupOfIntersection(A, B) : ModAbVar, ModAbVar -> ModAbVarSubGrp
- ComponentGroupOfKernel(phi) : MapModAbVar -> ModAbVarSubGrp
- ComponentGroupOrder(A, p) : ModAbVar, RngIntElt -> RngIntElt
- ComponentGroupOrder(M, p) : ModSym, RngIntElt -> RngIntElt
- CompositionTreeNiceGroup(G) : Grp -> GrpMat[FldFin]
- ConditionalClassGroup(O) : RngOrd -> GrpAb, Map
- ConditionedGroup(G) : GrpPC -> GrpPC
- ConformalOrthogonalGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
- ConformalOrthogonalGroupMinus(n, q) : RngIntElt, RngIntElt -> GrpMat
- ConformalOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
- ConformalSpecialOrthogonalGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
- ConformalSpecialOrthogonalGroupMinus(n, q) : RngIntElt, RngIntElt -> GrpMat
- ConformalSpecialOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
- ConformalSpecialUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
- ConformalSymplecticGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
- ConformalUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
- CongruenceGroup(M1, M2, prec) : ModFrm, ModFrm, RngIntElt -> GrpAb
- CongruenceGroup(M : parameters) : ModSym -> GrpAb
- CongruenceGroupAnemic(M1, M2, prec) : ModFrm, ModFrm, RngIntElt -> GrpAb
- CorrelationGroup(D) : IncGeom -> GrpPerm
- CosetGeometryFromCPlusGroup(G) : GrpPerm -> CosetGeom
- CosetTableToPermutationGroup(G, T) : GrpFP, Map -> GrpPerm
- CoxeterGroup(M) : AlgMatElt -> GrpPermCox
- CoxeterGroup(GrpFPCox, C) : Cat, AlgMatElt -> GrpFPCox
- CoxeterGroup(GrpFPCox, M) : Cat, AlgMatElt -> GrpFPCox
- CoxeterGroup(GrpFPCox, M) : Cat, AlgMatElt -> GrpFPCox
- CoxeterGroup(GrpPermCox, M) : Cat, AlgMatElt -> GrpPermCox
- CoxeterGroup(GrpFP, W) : Cat, GrpFPCox -> GrpFP, Map
- CoxeterGroup(GrpPerm, W) : Cat, GrpFPCox -> GrpPerm, Map
- CoxeterGroup(GrpPermCox, W) : Cat, GrpFPCox -> GrpPermCox, Map
- CoxeterGroup(GrpFPCox, D) : Cat, GrphDir -> GrpFPCox
- CoxeterGroup(GrpFPCox, G) : Cat, GrphUnd -> GrpFPCox
- CoxeterGroup(GrpFPCox, W) : Cat, GrpMat -> GrpFPCox
- CoxeterGroup(GrpFPCox, W) : Cat, GrpMat -> GrpPermCox
- CoxeterGroup(GrpPermCox, W) : Cat, GrpMat -> GrpPermCox
- CoxeterGroup(GrpFP, W) : Cat, GrpMat -> GrpPermCox, Map
- CoxeterGroup(GrpPerm, W) : Cat, GrpMat -> GrpPermCox, Map
- CoxeterGroup(GrpPermCox, W) : Cat, GrpMat -> GrpPermCox, Map
- CoxeterGroup(GrpFP, W) : Cat, GrpPermCox -> GrpFP, Map
- CoxeterGroup(GrpFP, W) : Cat, GrpPermCox -> GrpFPCox
- CoxeterGroup(GrpFPCox, W) : Cat, GrpPermCox -> GrpFPCox, Map
- CoxeterGroup(GrpPerm, W) : Cat, GrpPermCox -> GrpPerm, Map
- CoxeterGroup(GrpFPCox, N) : Cat, MonStgElt -> GrpFPCox
- CoxeterGroup(GrpFPCox, R) : Cat, RootDtm -> GrpFPCox
- CoxeterGroup(GrpFPCox, R) : Cat, RootSys -> GrpFPCox
- CoxeterGroup(GrpFPCox, R) : Cat, RootSys -> RngIntElt
- CoxeterGroup(A, B) : Mtrx, Mtrx -> GrpPermCox
- CoxeterGroup(R) : RootDtm -> GrpPermCox
- CoxeterGroup(R) : RootSys -> RngIntElt
- CoxeterGroupOrder(C) : AlgMatElt -> .
- CoxeterGroupOrder(M) : AlgMatElt -> RngIntElt
- CoxeterGroupOrder(D) : GrphDir -> .
- CoxeterGroupOrder(G) : GrphUnd -> .
- CoxeterGroupOrder(N) : MonStgElt -> .
- CoxeterGroupOrder(R) : RootStr -> RngIntElt
- CoxeterGroupOrder(R) : RootSys -> RngIntElt
- CyclicGroup(C, n) : Cat, RngIntElt -> GrpFin
- CyclicGroup(GrpGPC, n) : Cat, RngIntElt -> GrpGPC
- CyclicGroup(GrpPC, n) : Cat, RngIntElt -> GrpPC
- CyclicGroup(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
- CyclotomicAutomorphismGroup(K) : FldCyc -> GrpAb, Map
- DecompositionGroup(P) : PlcNumElt -> GrpPerm
- DecompositionGroup(P) : PlcNumElt -> GrpPerm
- DecompositionGroup(p, A) : PlcNumElt, FldAb -> GrpAb
- DecompositionGroup(p) : RngIntElt -> GrpPerm
- DecompositionGroup(p, A) : RngIntElt, FldAb -> GrpAb
- DecompositionGroup(L) : RngLocA -> GrpPerm
- DefectGroup(x, p) : AlgChtrElt, RngIntElt -> Grp
- DefectGroup(T, b, p) : SeqEnum[AlgChtrElt], SetEnum[RngIntElt], RngIntElt -> Grp
- DerivedGroupMonteCarlo(G : parameters) : GrpMat -> GrpMat
- DerivedSubgroup(G) : GrpFin -> GrpFin
- DerivedSubgroup(G) : GrpGPC -> GrpGPC
- DicyclicGroup(n) : RngIntElt -> GrpFP
- DihedralGroup(C, n) : Cat, RngIntElt -> GrpFin
- DihedralGroup(GrpGPC, n) : Cat, RngIntElt -> GrpGPC
- DihedralGroup(GrpPC, n) : Cat, RngIntElt -> GrpPC
- DihedralGroup(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
- DirichletGroup(N) : RngIntElt -> GrpDrch
- DirichletGroup(N,R) : RngIntElt, Rng -> GrpDrch
- DirichletGroup(N,R,z,r) : RngIntElt, Rng, RngElt, RngIntElt -> GrpDrch
- DirichletGroup(I) : RngOrdIdl -> GrpDrchNF
- DivisorClassGroup(C) : RngCox -> TorLat
- DivisorGroup(C) : Crv -> DivCrv
- DivisorGroup(D) : DivCrvElt -> DivCrv
- DivisorGroup(F) : FldFun -> DivFun
- DivisorGroup(F) : FldFun -> DivFun
- DivisorGroup(F) : FldFunG -> DivFun
- DivisorGroup(X) : Sch -> DivSch
- DivisorGroup(X) : TorVar -> DivTor
- EdgeGroup(G) : Grph -> GrpPerm, GSet
- ElementaryAbelianGroup(GrpGPC, p, n) : Cat, RngIntElt, RngIntElt -> GrpGPC
- ExistsGroupData(D, o1, o2): DB, RngIntElt, RngIntElt -> BoolElt
- ExtendedSpecialUnitaryGroup(n,q,m) : RngIntElt, RngIntElt, RngIntElt -> GrpMat
- ExtendedSymplecticGroup(n,q,m) : RngIntElt, RngIntElt, RngIntElt -> GrpMat
- ExtendedUnitGroup(D) : NfdDck -> GrpMat
- ExtensionsOfElementaryAbelianGroup(p, d, G) : RngIntElt, RngIntElt, GrpPerm -> SeqEnum
- ExtensionsOfSolubleGroup(H, G) : GrpPerm, GrpPerm -> SeqEnum
- ExtraSpecialGroup(G) : GrpMat -> GrpMat
- ExtraSpecialGroup(C, p, n : parameters) : Cat, RngIntElt, RngIntElt -> GrpFin
- ExtraSpecialGroup(GrpGPC, p, n : parameters) : Cat, RngIntElt, RngIntElt -> GrpGPC
- ExtraSpecialGroup(GrpPC, p, n : parameters) : Cat, RngIntElt, RngIntElt -> GrpPC
- ExtraSpecialGroup(GrpPerm, p, n : parameters) : Cat, RngIntElt, RngIntElt -> GrpPerm
- ExtractGroup(P) : GrpFPLixProc -> GrpFP
- ExtractGroup(P) : GrpPCpQuotientProc -> GrpPC
- FactoredChevalleyGroupOrder(type, n, F: parameters) : MonStgElt, RngIntElt, FldFin -> RngIntEltFact
- FittingGroup(G) : GrpAb -> GrpAb
- FittingGroup(G) : GrpPerm -> GrpPerm
- FittingSubgroup(G) : GrpGPC -> GrpGPC
- FittingSubgroup(G) : GrpPC -> GrpPC
- FixedGroup(K, L) : FldAlg, FldAlg -> GrpPerm
- FixedGroup(K, a) : FldAlg, FldAlgElt -> GrpPerm
- FixedGroup(K, L) : FldAlg, [FldAlgElt] -> GrpPerm
- FormalGroupHomomorphism(phi, prec) : MapSch, RngIntElt -> RngSerPowElt
- FormalGroupLaw(E, prec) : CrvEll, RngIntElt -> RngMPolElt
- FreeAbelianGroup(GrpGPC, n) : Cat, RngIntElt -> GrpGPC
- FreeAbelianGroup(n) : RngIntElt -> GrpAb
- FreeGroup(n) : RngIntElt -> GrpFP
- FreeNilpotentGroup(r, e) : RngIntElt, RngIntElt -> GrpGPC
- FuchsianGroup(A) : AlgQuat -> GrpPSL2
- FuchsianGroup(A, N) : AlgQuat, RngOrdIdl -> GrpPSL2
- FuchsianGroup(O) : AlgQuatOrd -> GrpPSL2
- FullDirichletGroup(N) : RngIntElt -> GrpDrch
- FundamentalGroup(C) : AlgMatElt -> GrpAb
- FundamentalGroup(D) : GrphDir -> GrpAb
- FundamentalGroup(G) : GrpLie -> GrpAb, Map
- FundamentalGroup(W) : GrpMat -> GrpAb
- FundamentalGroup(W) : GrpPermCox -> GrpAb
- FundamentalGroup(N) : MonStgElt -> GrpAb
- FundamentalGroup(X) : RieSrf -> SeqEnum[CChain]
- FundamentalGroup(R) : RootDtm -> GrpAb, Map
- FundamentalGroup(P) : SeqEnum[FldComElt] -> FldComElt, SeqEnum[FldComElt], SeqEnum[CPath], SeqEnum[SeqEnum[RngIntElt]]
- GaloisGroup(K, k) : FldFin, FldFin -> GrpPerm, [FldFinElt]
- GaloisGroup(F) : FldFun -> GrpPerm, [RngElt], GaloisData
- GaloisGroup(K) : FldNum -> GrpPerm, SeqEnum, GaloisData
- GaloisGroup(K) : FldNum -> GrpPerm, [RngElt], GaloisData
- GaloisGroup(f) : RngUPolElt -> GrpPerm, [ RngElt ], GaloisData
- GaloisGroup(f) : RngUPolElt[FldPad] -> GrpPerm, SeqEnum, UserProgram
- GaloisGroup(f) : RngUPolElt[RngInt] -> GrpPerm, SeqEnum, GaloisData
- GaloisGroupInvariant(G, H) : GrpPerm, GrpPerm -> RngSLPolElt
- GammaGroup(k, G) : Fld, GrpLie -> GGrp
- GammaGroup(k, A) : Fld, GrpLieAuto -> GGrp
- GammaGroup(Gamma, A, action) : Grp, Grp, Map[Grp, GrpAuto] -> GGrp
- GammaGroup(alpha) : OneCoC -> GGrp
- GeneralLinearGroup(n, R) : RngIntElt, Rng -> GrpMat
- GeneralLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
- GeneralOrthogonalGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
- GeneralOrthogonalGroupMinus(n, q) : RngIntElt, RngIntElt -> GrpMat
- GeneralOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
- GeneralUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
- GeneratorsOfGroupOfUnits(A) : AlgBas -> SeqEnum, SeqEnum
- GenericAbelianGroup(U: parameters) : . -> GrpAbGen
- GenericGroup(X) : [] -> GrpFp, Map
- Genus2Group(f) : RngUPolElt -> GrpPC
- GeometricAutomorphismGroup(C) : Crv -> GrpPerm
- GeometricAutomorphismGroup(C) : CrvHyp : -> GrpPerm
- GeometricAutomorphismGroupFromShiodaInvariants(JI) : SeqEnum -> GrpPerm
- GeometricAutomorphismGroupGenus2Classification(F) : FldFin -> SeqEnum, SeqEnum
- GeometricAutomorphismGroupGenus3Classification(F) : FldFin -> SeqEnum,SeqEnum
- GeometricGaloisGroup(f) : RngUPolElt -> GrpPerm, RngUPolElt, GaloisData
- GlobalUnitGroup(C) : Crv[FldFin] -> GrpAb, Map
- GlobalUnitGroup(F) : FldFun -> GrpAb, Map
- GlobalUnitGroup(F) : FldFunG -> GrpAb, Map
- GradedAutomorphismGroup(A) : AlgBas -> GrpMat, SeqEnum[ModMatFldElt], SeqEnum[ModMatFldElt], SeqEnum[ModMatFldElt]
- GradedAutomorphismGroupMatchingIdempotents(A) : AlgBas -> GrpMat, SeqEnum, SecEnum
- Group(A) : AlgBasGrpP -> Grp
- Group(R) : AlgChtr -> Grp
- Group(S) : AlgGrpSub -> Grp
- Group(A) : ArtRep -> GrpPerm
- Group(C) : CosetGeom -> GrpPerm
- Group(D, i): DB, RngIntElt -> GrpFP, SeqEnum
- Group(D, i): DB, RngIntElt -> GrpMat
- Group(D, i): DB, RngIntElt -> GrpMat
- Group(D, i): DB, RngIntElt -> GrpMat
- Group(D, i): DB, RngIntElt -> GrpMat
- Group(D, d, i): DB, RngIntElt, RngIntElt -> GrpMat
- Group(D, d, i): DB, RngIntElt, RngIntElt -> GrpMat
- Group(D, d, i): DB, RngIntElt, RngIntElt -> GrpMat
- Group(D, d, i): DB, RngIntElt, RngIntElt -> GrpMat
- Group(F) : FldInvar -> Grp
- Group(A) : GalRep -> GrpPerm
- Group(A) : GGrp -> Grp
- Group(A) : GrpAuto -> Grp
- Group(V) : GrpFPCos -> GrpFP
- Group(P) : GrpFPCosetEnumProc -> GrpFP
- Group(P) : GrpFPTietzeProc -> GrpFP, Map
- Group(G) : GrpPSL2 -> GrpFP, Map, Map
- Group(Y) : GSet -> GrpPerm
- Group(L) : Lat -> GrpMat
- Group< X | R > : List(Identifiers), List(GrpFPRel) -> GrpFP, Hom(Grp)
- Group(CM) : ModCoho -> Grp
- Group(M) : ModGrp -> Grp
- Group(s) : MonStgElt -> Grp
- Group(R) : RngInvar -> Grp
- Group(e) : SubGrpLatElt -> GrpFin
- Group(FS) : SymFry -> GrpPSL2
- GroupAlgebra(S) : AlgGrpSub -> AlgGrp
- GroupAlgebra( R, G: parameters ) : Rng, Grp -> AlgGrp
- GroupAlgebra(R, G) : Rng, Grp -> AlgGrp
- GroupAlgebraAsStarAlgebra(R, G) : Rng, Grp -> AlgGrp
- GroupData(D, i): DB, RngIntElt -> Rec
- GroupIdeal(F) : FldInvar -> RngMPol
- GroupIdeal(R) : RngInvar -> RngMPol
- GroupName(G) : Grp -> MonStgElt
- GroupOfLieType(L) : AlgLie -> GrpLie
- GroupOfLieType(C, k) : AlgMatElt, Rng -> GrpLie
- GroupOfLieType(W, k) : GrpMat, Rng -> GrpLie
- GroupOfLieType(W, k) : GrpPermCox, Rng -> GrpLie
- GroupOfLieType(W, R) : GrpPermCox, Rng -> GrpLie
- GroupOfLieType(W, q) : GrpPermCox, RngIntElt -> GrpLie
- GroupOfLieType(N, k) : MonStgElt, Rng -> GrpLie
- GroupOfLieType(N, q) : MonStgElt, RngIntElt -> GrpLie
- GroupOfLieType(C, k) : Mtrx, Rng -> GrpLie
- GroupOfLieType(C, q) : Mtrx, RngIntElt -> GrpLie
- GroupOfLieType(R, k) : RootDtm, Rng -> GrpLie
- GroupOfLieType(R, k) : RootDtm, Rng -> GrpLie
- GroupOfLieType(R, q) : RootDtm, RngIntElt -> GrpLie
- GroupOfLieTypeFactoredOrder(R, q) : RootDtm, RngElt -> RngIntElt
- GroupOfLieTypeHomomorphism(phi, k) : Map, Rng -> .
- GroupOfLieTypeHomomorphism(phi, k) : Map, Rng -> GrpLie
- GroupOfLieTypeOrder(R, q) : RootDtm, RngElt -> RngIntElt
- HadamardAutomorphismGroup(H : parameters) : AlgMatElt -> AlgMatElt
- HasIntersectionPropertyPlus(G) : GrpPerm -> BoolElt
- HeckeCharacterGroup(A) : FldAb -> GrpHecke
- HeckeCharacterGroup(L) : FldNum -> GrpHecke
- HeckeCharacterGroup(I) : RngOrdIdl -> GrpHecke
- HeisenbergGroup(T) : TenSpcElt -> GrpMat
- HermitianAutomorphismGroup(M) : Mtrx -> GrpMat
- HomologyGroup(X, q) : SmpCpx, RngIntElt -> ModRng
- IdentifyAlmostSimpleGroup(G) : GrpPerm -> Map, GrpPerm
- IdentifyGroup(G): Grp -> Tup
- ImproveAutomorphismGroup(F, E) : FldAb, SeqEnum -> GrpFP, SeqEnum
- InducedGammaGroup(A, B) : GGrp, Grp -> GGrp
- InertiaGroup(A) : GalRep -> GrpPerm
- InertiaGroup(A,n) : GalRep,RngIntElt -> GrpPerm
- InertiaGroup(p) : RngOrdIdl -> GrpPerm
- InnerAutomorphismGroup(A) : AlgBas -> GrpMat
- InnerAutomorphismGroup(L) : AlgLie -> GrpLie, Map
- IntegralGroup(G) : GrpMat -> GrpMat, AlgMatElt
- IntegralMatrixGroupDatabase() : -> DB
- IntersectionGroup(M1, M2) : ModSym, ModSym -> GrpAb
- IntersectionGroup(S) : SeqEnum -> GrpAb
- InverseAutomorphismFreeGroup(F, Q) : GrpFP, SeqEnum -> GrpAutoElt
- InvolutionClassicalGroupEven(G : parameters) : GrpMat[FldFin] ->GrpMatElt[FldFin], GrpSLPElt, RngIntElt
- IrreducibleCoxeterGroup(GrpFPCox, X, n) : Cat, MonStgElt, RngIntElt -> GrpFPCox
- IrreducibleMatrixGroup(k, p, n) : RngIntElt, RngIntElt, RngIntElt -> GrpMat
- IrreducibleReflectionGroup(X, n) : MonStgElt, RngIntElt -> GrpMat
- IsInSmallGroupDatabase(o) : RngIntElt -> BoolElt
- IsIsomorphicSolubleGroup(G, H: parameters) : GrpPC, GrpPC -> BoolElt, Map
- IsLargeReeGroup(G) : GrpMat -> BoolElt, RngIntElt
- IsLinearGroup(G) : GrpMat -> BoolElt
- IsOrthogonalGroup(G) : GrpMat ->BoolElt
- IsRealReflectionGroup(G) : GrpMat -> BoolElt, [], []
- IsReeGroup(G) : GrpMat -> BoolElt, RngIntElt
- IsReflectionGroup(G) : GrpMat -> BoolElt
- IsReflectionGroup(G) : GrpMat -> BoolElt
- IsSoluble(D, o, n) : DB, RngIntElt, RngIntElt -> Grp
- IsSolubleAutomorphismGroupPGroup(A) : GrpAuto -> BoolElt
- IsSuzukiGroup(G) : GrpMat -> BoolElt, RngIntElt
- IsSymplecticGroup(G) : GrpMat -> BoolElt
- IsTameGenusGroup(G) : Group -> BoolElt
- IsTriangleGroup(G) : GrpPSL2 -> BoolElt
- IsUnitaryGroup(G) : GrpMat -> BoolElt
- IsogenyGroup(G) : GrpLie -> GrpAb, Map
- IsogenyGroup(W) : GrpMat -> GrpAb, Map
- IsogenyGroup(W) : GrpPermCox -> GrpAb
- IsogenyGroup(R) : RootDtm -> GrpAb, Map
- IsolGroup(n, p, i) : RngIntElt, RngIntElt, RngIntElt -> GrpMat
- IsolGroupDatabase() : -> DB
- IsolGroupOfDegreeFieldSatisfying(d, p, f) : RngIntElt, RngIntElt, Any -> GrpMat
- IsolGroupOfDegreeSatisfying(d, f) : RngIntElt, Any -> GrpMat
- IsolGroupSatisfying(f) : Any -> GrpMat
- IsometryGroup(V) : ModTupFld -> GrpMat
- IsometryGroup(F : parameters) : AlgMatElt -> GrpMat
- IsometryGroup(S : parameters) : SeqEnum -> GrpMat
- IsometryGroupClassLabel(type, g) : MonStgElt, GrpMatElt -> SetMulti
- IsometryGroupNumberOfClasses(type, n): MonStgElt, RngIntElt -> RngUPolElt
- IspGroup(G) : GrpAb -> BoolElt
- LMGDerivedGroup(G) : GrpMat -> GrpMat
- LargeReeGroup(q) : RngIntElt -> GrpMat
- LineGroup(P) : Plane -> GrpPerm, PowMap, Map
- LocalCoxeterGroup(H) : GrpPermCox -> GrpPermCox, Map
- LocalMultiplicativeGroupModSquares(p) : RngOrdIdl -> ModFld, Map
- MatrixGroup(K) : DBAtlasKeyMatRep -> GrpMat
- MatrixGroup(M) : ModGrp -> GrpMat
- MatrixGroup< n, R | L > : RngIntElt, Rng, List -> GrpMat
- MordellWeilGroup(J) : JacHyp -> GrpAb, Map, BoolElt, BoolElt
- MordellWeilGroup(E : parameters) : CrvEll[FldFunRat] -> GrpAb, Map
- MordellWeilGroup(H: parameters) : SetPtEll -> GrpAb, Map, BoolElt, BoolElt
- MordellWeilGroupGenus2(J) : JacHyp -> GrpAb, Map, BoolElt, BoolElt, RngIntElt
- MultiplicativeGroup(S) : AlgQuatOrd[RngInt] -> GrpPerm, Map
- MultiplicativeGroup(F) : FldFin -> GrpAb, Map
- MultiplicativeGroup(Z) : RngInt -> GrpAb, Map
- MultiplicativeGroup(R) : RngIntRes -> GrpAb, Map
- NaturalBlackBoxGroup(H) : Grp -> GrpBB
- NaturalGroup(L) : Lat -> GrpMat
- NoncentralGeneratorsOfGroupOfUnits(A) : AlgBas -> SeqEnum, SeqEnum
- NormGroup(A) : AlgMat -> GrpMat
- NormGroup(A) : FldAb -> Map, RngOrdIdl, [RngIntElt]
- NormGroup(F) : FldFun -> DivFunElt, GrpAb
- NormGroup(R, m) : FldPad, Map -> GrpAb, Map
- NormGroupDiscriminant(m, G) : Map, GrpAb -> RngIntElt
- NormOneGroup(S) : AlgAssVOrd -> GrpPerm, Map
- OrderAutomorphismGroupAbelianPGroup (A) : SeqEnum -> RngIntElt
- PCGroupAutomorphismGroupPGroup(A) : GrpAuto -> BoolElt, Map, GrpPC
- PGO(arguments)
- PGOMinus(arguments)
- PGOPlus(arguments)
- PSO(arguments)
- PSOMinus(arguments)
- PSOPlus(arguments)
- PerfectGroupDatabase() : -> DB
- PermutationGroup(C) : Code -> GrpPerm, PowMap, Map
- PermutationGroup(C) : CodeAdd -> GrpPerm
- PermutationGroup(C) : CodeLinRng -> GrpPerm
- PermutationGroup(Q) : CodeQuantum -> GrpPerm
- PermutationGroup(K) : DBAtlasKeyPermRep -> GrpPerm
- PermutationGroup(A) : GrpAb -> GrpPerm, Hom(Grp)
- PermutationGroup(A) : GrpAutCrv -> GrpPerm
- PermutationGroup(A) : GrpAuto -> GrpPerm
- PermutationGroup(G) : GrpFP -> GrpPerm, GrpHom
- PermutationGroup(D, i: parameters): DB, RngIntElt -> GrpPerm
- PermutationGroup< n | L > : RngIntElt, List -> GrpPerm
- PermutationGroup< X | L > : Set, List -> GrpPerm
- PermutationGroup< X | L > : Set, List -> GrpPerm, Hom
- PermutationGroupExtendedPerfectCodeZ4(δ, m) : RngIntElt, RngIntElt -> GrpPerm, Mtrx
- PermutationGroupExtendedPerfectCodeZ4Order(δ, m) : RngIntElt, RngIntElt -> RngIntElt
- PermutationGroupGrayMapImage(C) : CodeLinRng -> GrpPerm
- PermutationGroupHadamardCodeZ4(δ, m) : RngIntElt, RngIntElt -> GrpPerm, Mtrx
- PermutationGroupHadamardCodeZ4Order(δ, m) : RngIntElt, RngIntElt -> RngIntElt
- PhiSelmerGroup(f,q) : RngUPolElt, RngIntElt -> GrpAb, Map
- PicardGroup(O) : RngQuad -> GrpAb, Map
- Places(K) : FldNum -> PlcNum
- Places(K) : FldNum -> PlcNum
- PointGroup(D) : Inc -> GrpPerm, GSet
- PolycyclicGroup< x1, ..., xn | R : parameters > : List(Identifiers), List(GrpFPRel) -> GrpGPC, Map
- PolycyclicGroup< x1, ..., xn | R : parameters > : List(Identifiers), List(GrpFPRel) -> GrpPC, Map
- PowerGroup(G) : GrpPC -> PowerGroup
- PrimitiveGroup(d) : RngIntElt -> GrpPerm, MonStgElt, MonStgElt
- PrimitiveGroup(d, f) : RngIntElt, Program -> GrpPerm, MonStgElt
- PrimitiveGroup(d, n) : RngIntElt, RngIntElt -> GrpPerm, MonStgElt, MonStgElt
- PrimitiveGroup(S, f) : [RngIntElt], Program -> GrpPerm, MonStgElt
- PrimitiveGroupDatabaseLimit() : -> RngIntElt
- PrimitiveGroupDescription(d, n) : RngIntElt, RngIntElt -> MonStgElt
- PrimitiveGroupIdentification(G) : GrpPerm -> RngIntElt, RngIntElt
- PrimitiveGroupProcess(d: parameters) : RngIntElt -> Process
- PrimitiveGroupProcess(d, f: parameters) : RngIntElt, Program -> Process
- PrincipalUnitGroup(R) : RngPad -> GrpAb, Map
- PrincipalUnitGroupGenerators(R) : RngPad -> SeqEnum
- ProbableAutomorphismGroup(A) : FldAb -> GrpFP, SeqEnum
- ProjectiveGammaLinearGroup(arguments)
- ProjectiveGammaUnitaryGroup(arguments)
- ProjectiveGeneralLinearGroup(arguments)
- ProjectiveGeneralUnitaryGroup(arguments)
- ProjectiveSigmaLinearGroup(arguments)
- ProjectiveSigmaSymplecticGroup(arguments)
- ProjectiveSigmaUnitaryGroup(arguments)
- ProjectiveSpecialLinearGroup(arguments)
- ProjectiveSpecialUnitaryGroup(arguments)
- ProjectiveSuzukiGroup(arguments)
- ProjectiveSymplecticGroup(arguments)
- PseudoReflectionGroup(A, B) : Mtrx, Mtrx -> GrpMat, Map
- PureBraidGroup(W) : GrpFPCox -> GrpFP, Map
- QuadraticClassGroupTwoPart(K) : FldQuad -> GrpAb, Map
- QuantumBinaryErrorGroup(n) : RngIntElt -> GrpPC
- QuantumErrorGroup(Q) : CodeQuantum -> GrpPC
- QuantumErrorGroup(p, n) : RngIntElt, RngIntElt -> GrpPC
- QuasisimpleMatrixGroup(N, d, p : parameters) : MonStgElt, RngIntElt, RngIntElt ->GrpMat
- QuaternionicMatrixGroupDatabase() : -> DB
- RamificationGroup(p) : RngOrdIdl -> GrpPerm
- RamificationGroup(p, i) : RngOrdIdl, RngIntElt -> GrpPerm
- RandomGenus1Group(q, d, r : parameters) : RngIntElt, RngIntElt, RngIntElt -> GrpPC
- RandomGenus2Group(q, d : parameters) : RngIntElt, [RngIntElt] -> GrpPC
- RationalMatrixGroupDatabase() : -> DB
- RayClassGroup(D) : DivFunElt -> GrpAb, Map
- RayClassGroup(D) : DivNumElt -> GrpAb, Map
- RayClassGroup(I) : RngOrdIdl -> GrpAb, Map
- RayClassGroupDiscLog(y, D) : DivFunElt, DivFunElt -> GrpAbElt
- ReducedAutomorphismGroupOfHyperellipticCurve(X, Autos) : CrvHyp , List -> GrpPerm, Map
- ReducedAutomorphismGroupOfHyperellipticCurve(X) : CrvHyp -> GrpPerm, Map
- ReeGroup(q) : RngIntElt -> GrpMat
- ReflectionGroup(M) : AlgMatElt -> GrpMat
- ReflectionGroup(M) : AlgMatElt -> GrpMat
- ReflectionGroup(W) : GrpFPCox -> GrpMat, Map
- ReflectionGroup(W) : GrpFPCox -> GrpMat, Map
- ReflectionGroup(W) : GrpPermCox -> GrpMat
- ReflectionGroup(W) : GrpPermCox -> GrpMat, Map
- ReflectionGroup(W) : GrpPermCox -> GrpMat, Map
- ReflectionGroup(W) : GrpPermCox -> GrpMat, Map
- ReflectionGroup(N) : MonStgElt -> GrpMat
- ReflectionGroup(R) : RootDtm -> GrpMat
- ReflectionGroup(R) : RootSys -> GrpMat
- ReflectionGroup(R) : RootSys -> GrpMat
- RingClassGroup(O) : RngOrd -> GrpAb, Map
- SClassGroup(S) : SetEnum[PlcFunElt] -> GrpAb, Map, Map
- SClassGroupAbelianInvariants(S) : SetEnum[PlcFunElt] -> SeqEnum
- SClassGroupExactSequence(S) : SetEnum[PlcFunElt] -> Map, Map, Map
- SUnitGroup(I) : RngOrdFracIdl -> GrpAb, Map
- SUnitGroup(S) : SetEnum[PlcFunElt] -> GrpAb, Map
- SchurIndexGroup(n: parameters) : RngIntElt -> GrpPC
- SelmerGroup(phi) : Map -> GrpAb, Map, Map, SeqEnum, SetEnum
- SemiLinearGroup(G, S) : GrpMat, FldFin -> GrpMat
- SetClassGroupBounds(string) : MonStgElt ->
- SetClassGroupBounds(n) : RngIntElt ->
- SetPrintClassGroupWarnings(b) : BoolElt ->
- ShephardTodd(m, p, n) : RngIntElt, RngIntElt, RngIntElt -> GrpMat, Fld
- SimilarityGroup(V) : ModTupFld -> GrpMat
- SimilarityGroup(F : parameters) : AlgMatElt -> GrpMat
- SimpleGroup(N) : RngIntElt -> Grp
- SimpleGroupID(N) : -> Tup -> RngIntElt
- SimpleGroupIDToNumber(T) : Tup -> RngIntElt
- SimpleGroupName(G : parameters): GrpMat -> BoolElt, List
- SimpleGroupName(N) : RngIntElt -> MonStgElt
- SimpleGroupNameToNumber(S) : MonStgElt -> RngIntElt
- SimpleGroupOfLieType(X, n, k) : MonStgElt, RngIntElt, Rng -> GrpLie
- SimpleGroupOfLieType(X, n, q) : MonStgElt, RngIntElt, RngIntElt -> GrpLie
- SimpleGroupOfOrder(M) : RngIntElt -> Grp
- SmallGroup(o: parameters) : RngIntElt -> Grp
- SmallGroup(o, f: parameters) : RngIntElt, Program -> Grp
- SmallGroup(o, f: parameters) : RngIntElt, Program -> Grp
- SmallGroup(o, n) : RngIntElt, RngIntElt -> Grp
- SmallGroupDatabase() : -> DB
- SmallGroupDatabaseLimit() : -> RngIntElt
- SmallGroupDecoding(c, o) : RngIntElt, RngIntElt -> GrpPC
- SmallGroupEncoding(G) : GrpPC -> RngIntElt, RngIntElt
- SmallGroupIsInsoluble(o, n) : RngIntElt, RngIntElt -> Grp
- SmallGroupProcess(o: parameters) : RngIntElt -> Process
- SmallGroupProcess(o, f: parameters) : RngIntElt, Program -> Process
- SmallGroupProcess(S: parameters) : [RngIntElt] -> Process
- SmallGroupProcess(S, f: parameters) : [RngIntElt], Program -> Process
- SpecialLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
- SpecialOrthogonalGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
- SpecialOrthogonalGroupMinus(n, q) : RngIntElt, RngIntElt -> GrpMat
- SpecialOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
- SpecialUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
- StabilizerGroup(Q) : CodeQuantum -> GrpPC
- StabilizerGroup(Q, G) : CodeQuantum, GrpPC -> GrpPC
- StandardActionGroup(W) : GrpFPCox -> GrpPerm, Map
- StandardActionGroup(W) : GrpMat -> GrpPerm, Map
- StandardGeneratorsGroupNames() : -> SetIndx
- StandardGroup(G) : GrpPerm -> GrpPerm, Map
- StarOnGroupAlgebra(A) : AlgGrp -> Map
- SuzukiGroup(q) : RngIntElt -> GrpMat
- Sym(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
- Sym(n) : RngIntElt -> GrpPerm
- Sym(X) : Set -> GrpPerm
- SymmetricGroup(C, n) : Cat, RngIntElt -> GrpFin
- SymplecticGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
- SymplecticMatrixGroupDatabase() : -> DB
- TGAutomorphismGroup(G : parameters) : GrpPC -> GrpAuto
- TGPseudoIsometryGroup(t : parameters) : TenSpcElt -> GrpMat
- TGRandomGroup(q, n, g : parameters) : RngIntElt, RngIntElt, RngIntElt -> GrpPC
- ThreeSelmerGroup(E : parameters) : CrvEll -> GrpAb, Map
- TorsionUnitGroup(O) : RngOrd -> GrpAb, Map
- TransitiveGroup(d) : RngIntElt -> GrpPerm, MonStgElt
- TransitiveGroup(d, f) : RngIntElt, Program -> GrpPerm, MonStgElt
- TransitiveGroup(d, n) : RngIntElt, RngIntElt -> GrpPerm, MonStgElt
- TransitiveGroup(S, f) : [RngIntElt], Program -> GrpPerm, MonStgElt
- TransitiveGroupDatabaseLimit() : -> RngIntElt
- TransitiveGroupDescription(G) : GrpPerm -> MonStgElt
- TransitiveGroupDescription(d, n) : RngIntElt, RngIntElt -> MonStgElt
- TransitiveGroupIdentification(G) : GrpPerm -> RngIntElt, RngIntElt
- TransitiveGroupProcess(d) : RngIntElt -> Process
- TransitiveGroupProcess(d, f) : RngIntElt, Program -> Process
- TransitiveGroupProcess(S) : [RngIntElt] -> Process
- TransitiveGroupProcess(S, f) : [RngIntElt], Program -> Process
- TwistedGroup(A, alpha) : GGrp, OneCoC -> GGrp
- TwistedGroupOfLieType(t, r, q) : MonStgElt, RngIntElt, RngIntElt -> GrpLie
- TwistedGroupOfLieType(c) : OneCoC -> GrpLie
- TwistedGroupOfLieType(R, k, K) : RootDtm, Rng, Rng-> GrpLie
- TwistedGroupOfLieType(R, q, r) : RootDtm, RngIntElt, RngIntElt -> GrpLie
- TwoSelmerGroup(E) : CrvEll -> GrpAb, Map, SetEnum, Map, SeqEnum
- TwoSelmerGroup(E) : CrvEll[FldFunG] -> GrpAb, MapSch
- TwoSelmerGroup(J) : JacHyp -> GrpAb, Map, Any, Any
- TwoSidedIdealClassGroup(S : Support) : AlgAssVOrd -> GrpAb, Map
- TwoTransitiveGroupIdentification(G) : GrpPerm -> Tup
- UnipotentMatrixGroup(G) : GrpMat -> GrpMatUnip
- UnitGroup(K) : FldNum -> GrpAb, Map
- UnitGroup(F) : FldPad -> GrpAb, Map
- UnitGroup(Q) : FldRat -> GrpAb, Map
- UnitGroup(N) : Nfd -> GrpMat, Map
- UnitGroup(O) : RngFunOrd -> GrpAb, Map
- UnitGroup(R) : RngIntRes -> GrpAb, Map
- UnitGroup(O) : RngOrd -> GrpAb, Map
- UnitGroup(OQ) : RngOrdRes -> GrpAb, Map
- UnitGroup(R) : RngPad -> GrpAb, Map
- UnitGroupAsSubgroup(O) : RngOrd -> GrpAb
- UnitGroupGenerators(F) : FldPad -> SeqEnum
- UnitGroupGenerators(R) : RngPad -> SeqEnum
- WG2GroupRep(wg) : GrphUnd -> SeqEnum
- WeylGroup(L) : AlgLie -> GrpPermCox
- WeylGroup(GrpFPCox, L) : Cat, AlgLie -> GrpPermCox
- WeylGroup(GrpMat, L) : Cat, AlgLie -> GrpPermCox
- WeylGroup(GrpFPCox, G) : Cat, GrpLie -> GrpFPCox
- WeylGroup(GrpMat, G) : Cat, GrpLie -> GrpMat
- WeylGroup(G) : GrpLie -> GrpPermCox
- WordGroup(G) : GrpMat -> GrpSLP, Map
- WordGroup(G) : GrpPerm -> GrpBB, Map
- pCoveringGroup(~P) : GrpPCpQuotientProc ->
- pSelmerGroup(p,F) : RngIntElt, FldPad -> GrpAb, Map
- pSelmerGroup(p, S) : RngIntElt, { RngOrdIdl } -> GrpAb, Map
- pSelmerGroup(A, p, S) : RngUPolRes, RngIntElt, SetEnum[RngOrdIdl] -> GrpAb, Map
V2.28, 13 July 2023