Basic Invariants

Contents

BaseField(A) : GalRep -> FldPad
The base field K of the Galois representation A: Gal(bar K/K)toGLm(C).

Degree(A) : GalRep -> RngIntElt
Dimension(A) : GalRep -> RngIntElt
Degree (=dimension) m of a Galois representation A: Gal(bar K/K)toGLm(C)

Example GalRep_galrep-degree (H57E23)

> K:=pAdicField(3,20);
> R<x>:=PolynomialRing(K);
> F:=ext<K|x^3-3>;
> list:=GaloisRepresentations(F,K);
> forall{A: A in list | BaseField(A) eq K};
true
> [Degree(A): A in list];
[ 1, 1, 2 ]
Group(A) : GalRep -> GrpPerm
GaloisGroup(A) : GalRep -> GrpPerm
Finite Galois group Gal(F/K) that computes the finite part of a Galois representation, where F is Field(A) and K is BaseField(A).

Example GalRep_galrep-group (H57E24)

> K:=pAdicField(2,20);
> R<x>:=PolynomialRing(K);
> list1:=[PrincipalCharacter(K),CyclotomicCharacter(K),SP(K,3)];
> [Degree(A): A in list1];
[ 1, 1, 3 ]
> [GroupName(Group(A)): A in list1];
[ C1, C1, C1 ]
> list2:=GaloisRepresentations(x^4-2);
> [Degree(A): A in list2];
[ 1, 1, 1, 1, 2 ]
> [GroupName(Group(A)): A in list2];
[ D4, D4, D4, D4, D4 ]
> list1[1] eq list2[1];
true
FrobeniusElement(A) : GalRep -> GrpPermElt
An arithmetic Frobenius element of Group(A) for a Galois representation A.

Example GalRep_galrep-frobeniuselement (H57E25)

Take K=Q2 and F=Q25), a degree 4 unramified extension of K. A Frobenius element Frob∈Gal(F/K) is characterized by the property that Frob(x) ≡ xqmod mF. In this example, q=2 (size of the residue field of K).
> K:=pAdicField(2,20);
> R<x>:=PolynomialRing(K);
> A:=GaloisRepresentations(x^4+x^3+x^2+x+1)[4]; A;
1-dim unramified Galois representation (1,-1,-zeta(4)_4,zeta(4)_4)
   with G=C4, I=C1 over Q2[20]
> frob:=FrobeniusElement(A); frob;
(1, 2, 4, 3)
> F<u>:=Field(A);
> Valuation(Automorphism(A,frob)(u)-u^2) gt 0;
true
Character(A) : GalRep -> AlgChtrElt
Character of the finite part of a Galois representation A. For this to be well-defined, A must have only one component (and not several components with different characters).

Example GalRep_galrep-character (H57E26)

> K:=pAdicField(2,20);
> R<x>:=PolynomialRing(K);
> A1:=PrincipalCharacter(K);
> Character(A1);
( 1 )
> A2:=CyclotomicCharacter(K);
> Character(A2);
( 1 )
> A3:=PermutationCharacter(ext<K|3>,K);
> Character(A3);
( 3, 0, 0 )
> A1+A2+A3;
5-dim unramified Galois representation Unr(1-3/2*x+1/2*x^2) + (3,0,0)
   with G=C3, I=C1 over Q2[20]
Field(A) : GalRep -> FldPad
Given a Galois representation A, return the p-adic field F such that the finite part of A factors through Gal(F/K), K = BaseField(A).

DefiningPolynomial(A) : GalRep -> RngUPolElt
For a Galois representation A over K, returns a polynomial over K whose splitting field is F=Field(A). The Galois group Gal(F/K) is represented as a permutation group Group(A) on the roots of this polynomial.

Example GalRep_galrep-definingpolynomial (H57E27)

In this example K=Q5 and F/K is a dihedral extension of degree 12, represented as a splitting field of a degree 6 polynomial.
> K:=pAdicField(5,20);
> E:=EllipticCurve([K|0,5]);
> A:=GaloisRepresentation(E); A;
2-dim Galois representation Unr(sqrt(5)*i)*(2,-2,0,0,-1,1) with G=D6, I=C6,
   conductor 5^2 over Q5[20]
> Field(A);
Totally ramified extension defined by the polynomial x^6 - 5
 over Unramified extension defined by the polynomial x^2 + 4*x + 2
 over 5-adic field mod 5^20
> DefiningPolynomial(A);
x^6 + O(5^20)*x^5 + O(5^20)*x^4 + O(5^20)*x^3 + O(5^20)*x^2 + O(5^20)*x - 5 +
   O(5^20)
Automorphism(A,g) : GalRep,GrpPermElt -> Map
The automorphism of Field(A)/BaseField(A) given by g.

Example GalRep_galrep-automorphism (H57E28)

In this example K=Q5 and F/K is a dihedral extension of degree 12, represented as a splitting field of the polynomial x6 - 5.
> R<x>:=PolynomialRing(Rationals());
> K:=NumberField(x^6-5);
> a:=ArtinRepresentations(K)[6];
> A:=GaloisRepresentation(a,5); A;
2-dim Galois representation (2,-2,0,0,-1,1) with G=D6, I=C6, conductor 5^2
   over Q5[40]
> F:=Field(A); F;
Totally ramified extension defined by the polynomial x^6 - 5
 over Unramified extension defined by the polynomial x^2 + 4*x + 2
 over 5-adic field mod 5^40
> DefiningPolynomial(A);
x^6 - 5

The 12 elements σ∈Gal(F/K) isomorphic to D6 act on π=root 6 of 5 by multiplying it by 6th roots of unity, with σ(π)=π for 2 of them, and v(σ(π) - π)=1 for the other 10.

> pi:=UniformizingElement(F);
> autF:=[* Automorphism(A,g): g in Group(A) *];
> [Valuation(sigma(pi)-pi): sigma in autF];
[ 241, 1, 1, 1, 1, 1, 240, 1, 1, 1, 1, 1 ]
EulerFactor(A) : GalRep -> RngUPolElt
    R: Rng                              Default: 
Euler factor (=local polynomial) of a Galois representation A over a p-adic field K. It is defined by

P(T) = det (1 - FrobK - 1T|AIK),

and has degree Dimension(A) if and only if A is unramified. The coefficient ring of P (rational/complex/cyclotomic field) may be specified with the optional parameter R.

Example GalRep_galrep-eulerfactor (H57E29)

> G<chi>:=DirichletGroup(5);
> A:=GaloisRepresentation(chi,2);
> EulerFactor(A);
x + 1
> A:=GaloisRepresentation(chi,5);
> EulerFactor(A);
1
IsZero(A) : GalRep -> BoolElt
Return true if A is the Galois representation 0.

IsOne(A) : GalRep -> BoolElt
Return true if A is the trivial 1-dimensional Galois representation.

Factorization(A) : GalRep -> List,GalRep
Returns the list of tuples < χi,nii >, where A is the direct sum over i of twists by (SP)(ni) by unramified representations with Euler factor χi, and a finite Weil representation given by a character ρi of Group(A).

Example GalRep_galrep-factorization (H57E30)

> R<x>:=PolynomialRing(ComplexField());    // prettier print for complex polys
> K:=pAdicField(2,20);
> S:=SP(K,2);
> S; Factorization(S);
2-dim Galois representation SP(2) over Q2[20]
[*
<-x + 1, 2, ( 1 )>
*]
> A:=Semisimplification(S);
> A; Factorization(A);
2-dim unramified Galois representation Unr(1-3/2*x+1/2*x^2) over Q2[20]
[*
<1/2*x^2 - 3/2*x + 1, 1, ( 1 )>
*]
> [Factorization(I)[1]: I in Decomposition(A)];
[ <-x + 1, 1, ( 1 )>, <-1/2*x + 1, 1, ( 1 )> ]

Ramification

InertiaGroup(A) : GalRep -> GrpPerm
For a Galois representation A over a p-adic field K this is the image of inertia IK⊂Gal(bar K/K) under the semisimplification of A. Equivalently, if

A = ψ tensor SP(n) tensor R,

as in ParaNotation and Printing, with ψ unramified and R a representation of a finite Galois group Gal(F/K), this is the image of the inertia subgroup of Gal(F/K) under R. If F is chosen to be minimal possible (so that R is faithful), then InertiaGroup(A) simply is the inertia subgroup of Gal(F/K).

Example GalRep_galrep-inertia (H57E31)

Take K=Q3 and F=K(ζ6, root 6of 3), a D6-extension of K. For each of the 6 irreducible representations of Gal(F/K) we compute their inertia (=ramification) groups:
> K:=pAdicField(3,20);
> R<x>:=PolynomialRing(K);
> list:=GaloisRepresentations(x^6-3);
> [GroupName(InertiaGroup(A)): A in list];
[ C1, C2, C1, C2, S3, S3 ]
InertiaGroup(A,n) : GalRep,RngIntElt -> GrpPerm
The nth (lower) ramification subgroup of InertiaGroup(A).

Example GalRep_galrep-higherinertia (H57E32)

> K:=pAdicField(2,20);
> R<x>:=PolynomialRing(K);
> list:=GaloisRepresentations(x^8-2);
> a:=list[#list]; a;
2-dim Galois representation (2,-2,0,0,0,zeta(8)_8^3+zeta(8)_8,
   -zeta(8)_8^3-zeta(8)_8) with G=SD16, I=SD16, conductor 2^10 over Q2[20]
> [GroupName(InertiaGroup(a,n)): n in [1..17]];
[ SD16, SD16, C8, C8, C4, C4, C4, C4, C2, C2, C2, C2, C2, C2, C2, C2, C1 ]
IsUnramified(A) : GalRep -> BoolElt
Return true if a Galois representation is unramified.

Example GalRep_galrep-isunramified (H57E33)

> K:=pAdicField(2,20);
> IsUnramified(CyclotomicCharacter(K));
true
> IsUnramified(SP(K,2));
false
> IsUnramified(Semisimplification(SP(K,2)));
true
IsRamified(A) : GalRep -> BoolElt
Return true if a Galois representation is ramified.

Example GalRep_galrep-isramified (H57E34)

> K:=pAdicField(2,20);
> IsRamified(CyclotomicCharacter(K));
false
> IsRamified(SP(K,2));
true
> IsRamified(Semisimplification(SP(K,2)));
false
IsTamelyRamified(A) : GalRep -> BoolElt
Return true if a Galois representation A over a p-adic field K is tamely ramified. Equivalently, InertiaGroup(A) has order prime to p (and is then automatically cyclic).

IsWildlyRamified(A) : GalRep -> BoolElt
Return true if a Galois representation A over a p-adic field K is wildly ramified, i.e. not tamely ramified. Equivalently, InertiaGroup(A) has non-trivial p-Sylow.

Example GalRep_galrep-iswildlyramified (H57E35)

Galois representations attached to elliptic curves are always tamely ramified when p≥5, but may be wildly ramified when p=2 or 3.
> E:=EllipticCurve("75a1");
> A5:=GaloisRepresentation(E,5); A5;
2-dim Galois representation Unr(sqrt(5)*i)*(2,0,-1) with G=S3, I=C3, conductor
   5^2 over Q5[40]
> IsWildlyRamified(A5);
false
> E:=EllipticCurve("256a1");
> A2:=GaloisRepresentation(E,2); A2;
2-dim Galois representation Unr(sqrt(2))*(2,-2,0,0,0) with G=D4, I=C4,
   conductor 2^8 over Q2[40]
> IsWildlyRamified(A2);
true
InertiaInvariants(A) : GalRep -> GalRep
Inertia invariants of a Galois representation A. This is an unramified Galois representation.

Example GalRep_galrep-inertiainvariants (H57E36)

> K:=pAdicField(5,20);
> E:=BaseChange(EllipticCurve("15a1"),K);
> A:=GaloisRepresentation(E); A;
2-dim Galois representation Unr(5)*SP(2) over Q5[20]
> I:=InertiaInvariants(A); I;
1-dim trivial Galois representation 1 over Q5[20]
> Dimension(A),Dimension(I);
2 1
ConductorExponent(A) : GalRep -> RngIntElt
Conductor exponent of a Galois representation.

Conductor(A) : GalRep -> FldPadElt
Conductor of a Galois representation.

Example GalRep_galrep-conductor (H57E37)

> K:=pAdicField(2,40);
> E:=BaseChange(EllipticCurve("256a1"),K);
> A:=GaloisRepresentation(E); A;
2-dim Galois representation Unr(sqrt(2))*(2,-2,0,0,0) with G=D4, I=C4,
   conductor 2^8 over Q2[40]
> ConductorExponent(A);
8
> Conductor(A);
2^8 + O(2^48)
> Conductor(E);    // same, by definition
2^8 + O(2^48)
EpsilonFactor(A) : GalRep -> FldComElt
Epsilon-factor ε(A) of a Galois representation over a p-adic field. Currently only implemented in a few basic cases, and returns 0 otherwise. See also Example H57E52 in ParaExample: Local and Global Epsilon Factors for Dirichlet Characters.

RootNumber(A) : GalRep -> FldComElt
Root number ε(A)/|ε(A)| of a Galois representation. Currently only implemented in a few basic cases, and returns 0 otherwise. See also Example H57E52 in ParaExample: Local and Global Epsilon Factors for Dirichlet Characters.

Example GalRep_epsilon-rootnumber (H57E38)

> E:=EllipticCurve("98a1");
> A:=GaloisRepresentation(E,7); A;
2-dim Galois representation Unr(7)*SP(2)*(1,-1) with G=C2, I=C2, conductor 7^2
   over Q7[40]
> RootNumber(A);
-1
> RootNumber(E,7);  // same
-1

Semisimplicity and Irreducibles

IsIrreducible(A) : GalRep -> BoolElt
Return true if a Galois representation A is irreducible.

Example GalRep_galrep-isirreducible (H57E39)

We take the polynomial x8 - 6 with Galois group C8:C22 over Q, its irreducible 4-dimensional Artin representation A, and compute whether its local components over Q2, Q3, Q5 and Q7 are irreducible.
> R<x>:=PolynomialRing(Rationals());
> K:=NumberField(x^8-6);
> GroupName(GaloisGroup(K));
C8:C2^2
> assert exists(A){A: A in ArtinRepresentations(K) | Degree(A) eq 4};
> A;
Artin representation C8:C2^2: (4,-4,0,0,0,0,0,0,0,0,0) of ext<Q|x^8-6>
> [IsIrreducible(GaloisRepresentation(A,p)): p in PrimesUpTo(10)];
[ true, false, false, false ]
IsIndecomposable(A) : GalRep -> BoolElt
Return true if a Galois representation A is indecomposable (for semisimple representations, i.e. Weil representations, same as irreducible).

IsSemisimple(A) : GalRep -> BoolElt
Return true if a Galois representation A is semisimple, i.e. a Weil representation.

Semisimplification(A) : GalRep -> GalRep
Semisimplification of a Galois representation A.

Decomposition(A) : GalRep -> SeqEnum[GalRep]
Decompose A into indecomposable (for semisimple representations same as irreducible) consituents and return them as a sequence, possibly with repetitions.

Example GalRep_galrep-decomposition (H57E40)

> K:=pAdicField(2,20);
> S:=SP(K,2);
> IsIndecomposable(S);
true
> IsIrreducible(S);
false
> IsSemisimple(S);
false
> Decomposition(S);
[ 2-dim Galois representation SP(2) over Q2[20] ]
> Decomposition(Semisimplification(S));
[
1-dim trivial Galois representation 1 over Q2[20],
1-dim unramified Galois representation Unr(1/2) over Q2[20]
]
V2.28, 13 July 2023