Roots, Coroots and Reflections

Many of these functions have an optional argument Basis which may take one of the following values

1.
"Standard": the standard basis for the (co)root space. This is the default.
2.
"Root": the basis of simple (co)roots.
3.
"Weight": the basis of fundamental (co)weights (see Subsection Weights below).

Contents

Accessing Roots and Coroots

RootSpace(W) : GrpMat -> Lat
CorootSpace(W) : GrpMat -> Lat
The base space of the reflection group W. If W is not a reflection group, an error occurs.

Example GrpRfl_RootSpace (H106E23)

> W := ComplexReflectionGroup("M", 3);
> RootSpace(W);
Full Vector space of degree 3 over Cyclotomic Field of order 24 and degree 8
SimpleOrders(W) : GrpMat -> [RngIntElt]
The sequence of simple orders of the reflection group W. If W is not a reflection group, an error is flagged.
SimpleRoots(W) : GrpMat -> Mtrx
SimpleCoroots(W) : GrpMat -> Mtrx
The simple (co)rootsof the reflection group W as the rows of a matrix, i.e. A (resp. B).
NumberOfPositiveRoots(W) : GrpMat -> RngIntElt
NumPosRoots(W) : GrpMat -> RngIntElt
The number of positive roots of the real reflection group W. This is also the number of positive coroots. The total number of (co)roots is twice the number of positive (co)roots. This number is finite if and only if W is finite.
Roots(W) : GrpMat -> (@@)
Coroots(W) : GrpMat -> (@@)
    Basis: MonStgElt                    Default: "Standard"
The indexed set of (co)roots of the real reflection group W, i.e. {@ α1, ... α2N @} (resp. {@ α1star, ... α2Nstar @}). If W is infinite, an error is flagged.
PositiveRoots(W) : GrpMat -> (@@)
PositiveCoroots(W) : GrpMat -> (@@)
    Basis: MonStgElt                    Default: "Standard"
The indexed set of positive (co)rootsof the real reflection group W, that is, {@ α1, ... αN @} (resp. {@ α1star, ... αNstar @}). If W is infinite, an error is flagged.
Root(W, r) : GrpMat, RngIntElt -> (@@)
Coroot(W, r) : GrpMat, RngIntElt -> (@@)
    Basis: MonStgElt                    Default: "Standard"
The rth (co)root αr (resp. αrstar) of the real reflection group W. If W is infinite, an error is flagged.
RootPosition(W, v) : GrpMat, . -> (@@)
CorootPosition(W, v) : GrpMat, . -> (@@)
    Basis: MonStgElt                    Default: "Standard"
If v is a (co)root in the finite real reflection group W, return its index; otherwise return 0. These functions will try to coerce v into the appropriate lattice; v should be written with respect to the basis specified by the parameter Basis. If W is infinite, an error is flagged.

Example GrpRfl_RootsCoroots (H106E24)

> W := ReflectionGroup("A3");
> Roots(W);
{@
    (1 0 0),
    (0 1 0),
    (0 0 1),
    (1 1 0),
    (0 1 1),
    (1 1 1),
    (-1  0  0),
    (0 -1  0),
    (0  0 -1),
    (-1 -1  0),
    (0 -1 -1),
    (-1 -1 -1)
@}
> PositiveCoroots(W);
{@
    (2 -1  0),
    (-1  2 -1),
    (0 -1  2),
    (1  1 -1),
    (-1  1  1),
    (1 0 1)
@}
> #Roots(W) eq 2*NumPosRoots(W);
true
> Root(W, 4);
(1 1 0)
> Root(W, 4 : Basis := "Root");
(1 1 0)
> RootPosition(W, [1,1,0]);
4
> A := Matrix(3,3,[1,0,0, -1,-1,-3, 1,2,4]);
> B := Matrix(3,3,[2,-1,0, -1,2,-1, 0,1,0]);
> W := ReflectionGroup(A,B);
> Roots(W);
{@
    (1 0 0),
    (-1 -1 -3),
    (1 2 4),
    (0 -1 -3),
    (0 1 1),
    (1 1 1),
    (-1  0  0),
    (1 1 3),
    (-1 -2 -4),
    (0 1 3),
    (0 -1 -1),
    (-1 -1 -1)
@}
> PositiveCoroots(W);
{@
    (2 -1  0),
    (-1  2 -1),
    (0 1 0),
    (1  1 -1),
    (-1  3 -1),
    (1  2 -1)
@}
> #Roots(W) eq 2*NumPosRoots(W);
true
> Root(W, 4);
(0 -1 -3)
> Root(W, 4 : Basis := "Root");
(1 1 0)
> RootPosition(W, [0,-1,-3]);
4

Reflections

The root α acts on the root space via the reflection sα; the coroot αstar acts on the coroot space via the coreflection sαstar.

ReflectionMatrices(W) : GrpMat -> [AlgMatElt]
CoreflectionMatrices(W) : GrpMat -> [AlgMatElt]
    Basis: MonStgElt                    Default: "Standard"
The sequence of reflections in the finite real reflection group W. The rth reflection in the sequence corresponds to the rth (co)root.
SimpleReflectionMatrices(W) : GrpMat -> [AlgMatElt]
SimpleCoreflectionMatrices(W) : GrpMat -> [AlgMatElt]
    Basis: MonStgElt                    Default: "Standard"
The matrices giving the action of the simple (co)roots on the (co)root space of the finite real reflection group W.
ReflectionMatrix(W, r) : GrpMat, RngIntElt -> AlgMatElt
CoreflectionMatrix(W, r) : GrpMat, RngIntElt -> []
    Basis: MonStgElt                    Default: "Standard"
The reflection in finite real reflection group W corresponding to the rth (co)root. If r=1, ..., n, this is a generator of W.
SimpleReflectionPermutations(W) : GrpMat -> []
The sequence of permutations giving the action of the simple (co)roots of the finite reflection group W on the (co)roots. This action is the same for roots and coroots.
ReflectionPermutations(W) : GrpMat -> []
The sequence of permutations giving the action of the (co)roots of the finite reflection group W on the (co)roots. This action is the same for roots and coroots.
ReflectionPermutation(W, r) : GrpMat, RngIntElt -> []
The permutation giving the action of the rth (co)root of the finite reflection group W on the (co)roots. This action is the same for roots and coroots.
ReflectionWords(W) : GrpMat -> []
The sequence of words in the simple reflections for all the reflections of the real reflection group W. These words are given as sequences of integers. In other words, if a = [a1, ..., al] = ReflectionWords(W)[r], then sαr = s_(αa1) ... s_(αal).
ReflectionWord(W, r) : GrpMat, RngIntElt -> []
The word in the simple reflections for the rth reflection of the real reflection group W. The word is given as a sequence of integers. In other words, if a = [a1, ..., al] = ReflectionWord(W, r), then sαr = s_(αa1) ... s_(αal).

Example GrpRfl_Action (H106E25)

> Q := RationalField();
> W := ReflectionGroup("A3");
> mx := ReflectionMatrix(W, 4);
> perm := ReflectionPermutation(W, 4);
> RootPosition(W, Vector(Q, Eltseq(Root(W,2))) * mx) eq 2^perm;
true
> mx := CoreflectionMatrix(W, 4);
> CorootPosition(W, Coroot(W,2) * mx) eq 2^perm;
true
Length(w) : GrpMatElt -> RngIntElt
CoxeterLength(w) : GrpMatElt -> RngIntElt
The lengthof w as an element of the Coxeter group W, ie. the number of positive roots of W which become negative under the action of w.

Weights

WeightLattice(W) : GrpMat -> Lat
CoweightLattice(W) : GrpMat -> Lat
The (co)weight lattice of the real reflection group W. The roots and coroots of W must have integral components.
FundamentalWeights(W) : GrpMat -> Mtrx
FundamentalCoweights(W) : GrpMat -> Mtrx
    Basis: MonStgElt                    Default: "Standard"
The fundamental weightsof the real reflection group W given as the rows of a matrix. The roots and coroots of W must have integral components.

Example GrpRfl_Weights (H106E26)

> W := ReflectionGroup("E6");
> WeightLattice(W);
Lattice of rank 6 and degree 6
Basis:
(4  3  5  6  4  2)
(3  6  6  9  6  3)
(5  6 10 12  8  4)
(6  9 12 18 12  6)
(4  6  8 12 10  5)
(2  3  4  6  5  4)
Basis Denominator: 3
> FundamentalWeights(W);
[ 4/3    1  5/3    2  4/3  2/3]
[   1    2    2    3    2    1]
[ 5/3    2 10/3    4  8/3  4/3]
[   2    3    4    6    4    2]
[ 4/3    2  8/3    4 10/3  5/3]
[ 2/3    1  4/3    2  5/3  4/3]
IsDominant(R, v) : RootDtm, . -> ModTupFldElt, GrpFPCoxElt
    Basis: MonStgElt                    Default: "Standard"
Returns true if and only if v is a dominant weight for the root datum R, ie, a nonnegative integral linear combination of the fundamental weights.
DominantWeight(W, v) : GrpMat, . -> ModTupFldElt, GrpFPCoxElt
    Basis: MonStgElt                    Default: "Standard"
The unique dominant weight in the same W-orbit as v, where W is a real reflection group and v is a weight given as a vector or a sequence representing a vector. The second value returned is a Coxeter group element taking v to the dominant weight.
WeightOrbit(W, v) : GrpMat, . -> @ ModTupFldElt @, [GrpFPCoxElt]
    Basis: MonStgElt                    Default: "Standard"
The W-orbit of v as an indexed set, where W is a real reflection group and v is a weight given as a vector or a sequence representing a vector. The first element in the orbit is always dominant. The second value returned is a sequence of Coxeter group words taking the weight v to the corresponding element of the orbit.

Example GrpRfl_DominantWeights (H106E27)

> W := CoxeterGroup("B3");
> DominantWeight(W, [1,-1,0] : Basis:="Weight");
(1 0 0)
$.2 * $.3 * $.2 * $.1
> #WeightOrbit(W, [1,-1,0] : Basis:="Weight");
6
V2.28, 13 July 2023