Given a module M with underlying vector space K(n),
and elements a1, ..., an belonging to K, construct
the element m = (a1, ..., an) of M. Note that if m is
not an element of M, an error will result.
Given the module M with underlying vector space Kn, and a sequence
Q = [a1, ..., an] with universe K, construct the element
m = (a1, ..., an) of M. Note that if m is not an
element of M, an error will result.
M ! 0 : ModRng, RngIntElt -> ModRngElt
The zero element for the A-module M.
Given a module M defined over a finite ring or field,
return a random vector.
Eltseq(u) : ModRngElt -> [RngElt]
Given an element u belonging to the A-module M, return u in
the form of a sequence Q of elements of K.
Given a vector u belonging to an A-module M, and an element
a ∈A return the image of u under the action of a.
Given a vector u belonging to an K[G]-module M, and an element g
belonging to the group G, return the image of u under the action of
K[G] on the module M.
Sum of the elements u and v, where u and v lie in the same
A-module M.
Additive inverse of the element u.
Difference of the elements u and v, where u and v lie in the
same A-module M.
Given an element u in an A-module M, where A is a K-algebra
and an element
k ∈K, return the scalar product
k * u as an element of M.
Given an element u in an A-module M, where A is a K-algebra
and an element
k ∈K, return the scalar product
u * k as an element of M.
Given an element u in an A-module M, where A is a K-algebra and
a non-zero element
k ∈K, return the scalar product
u * (1/k) as an element of M.
Given an element u belonging to a submodule M of the R-module
R(n) and a positive integer i, 1 ≤i≤n, return the
i-th component of u (as an element of the ring R).
Given an element u belonging to a submodule M of the R-module
T = R(n), a positive integer i, 1 ≤i≤n, and an
element x of the ring R, redefine the i-th component of u
to be x. The parent of u is changed to T (since the modified
element u need not lie in M).
Returns true if the element u of the A-module M is the zero element.
A set of integers giving the positions of the non-zero components
of the vector u.
V2.28, 13 July 2023