The functions in this group provide access to basic information stored for a group G.
The i-th defining generator for G, if i>0. If i<0, then the inverse of the -i-th defining generator is returned. The generator G.0 is equivalent to Identity(G).
A set containing the defining generators for G.
The number of defining generators for G.
Given a group G in the category GrpPerm or GrpMat, return the generic group containing G, i.e., the largest group in which G is naturally embedded. The precise definition of generic group depends upon the category to which G belongs.
The parent group G for the group element g.
> K<z> := GF(2, 3); > G := SuzukiGroup(8); > Generic(G); GL(4, GF(2, 3)) > Ngens(G); 3 > for i in [1..3] do > print "generator", i, G.i; > print "order", Order(G.i), "\r"; > end for; generator 1 [ 0 0 0 1] [ 0 0 1 0] [ 0 1 0 0] [ 1 0 0 0] order 2 generator 2 [z^2 0 0 0] [ 0 z^6 0 0] [ 0 0 z 0] [ 0 0 0 z^5] order 7 generator 3 [ 1 0 0 0] [z^2 1 0 0] [ 0 z 1 0] [z^5 z^3 z^2 1] order 4
Given a finitely generated group G that acts on the parent structure of x through the map (or user defined function) M, compute the orbit of x under G. Thus, for every generator g of G, M(g) must return a function that can be applied to x or any other element in the parent of x.If the orbit is infinite, this process will eventually run out of memory.
Given a finitely generated group G acting on the universe of S through the map or user defined function M, compute the smallest subset T containing S that is G-invariant. Thus, for every generator g of G, M(g) must return a function that can be applied to an arbitrary element in the universe of S.If the orbit closure is infinite, this process will eventually run out of memory.
Small groups (of order <512, not divisible by 128) have a unique name each, and Group(GroupName(G)) always returns a group isomorphic to G. For larger groups, Magma attempts to recognize direct products, wreath products and split extensions, and uses chief series if that fails. With TeX:=true, the returned string is in LaTeX format.
Here is a list of notation used by GroupName. See also example below.
Basic groups Cn Cyclic group of order n Dn Dihedral group of order 2n Sn Symmetric group on n letters An Alternating group on n letters Operators, high to low precedence ^ power, e.g C2^2 is the non-cyclic group of order 4 wr wreath product, e.g. C2wrC2=C2^2:C2=D4 : semidirect product, i.e. a split extension . (generally) non-split extension * direct product Other standard groups Fq Frobenius group of order q(q-1) Hep Heisenberg group of order p^3 Qn Generalized quaternion group, n=2^k SDn Semi-dihedral group C2^(k-1):C2 (n=2^k) with C2 acting as 2^(k-2)-1 ODn Other-dihedral group C2^(k-1):C2 (n=2^k) with C2 acting as 2^(k-2)+1 Simple, almost-simple and linear groups Mn Matthieu group (n in {11,12,21,22,23,24}) GL(n,q) General linear group; also SL,AGL,ASL,AGammaL,ASigmaL,PGL, PSL (=L),PGammaL,PSigmaL,SU,PSU,PGammaU,PSigmaU,O (=GO),SO, PSO,PGO,PGO+,PGO-,POmega,POmega+,POmega-,Sp,PSp,PSigmaSp B(n,q) Simple group of Lie type, also C,D,E,F,G,2A,2B,2D,2E,2F,2G,3D J1 Sporadic simple group; also Mn (see above),J2,J3,J4,HS,McL,Suz, Co1,Co2,Co3,HE,Fi22,Fi23,Fi24,Ly,Ru,ON,TH,HN,BM,M
TeX: BoolElt Default: false
Short name of a finite group G, as an abstract group.
> [GroupName(G): G in SmallGroups(24)]; [ C3:C8, C24, SL(2,3), C3:Q8, C4*S3, D12, C2*C3:C4, C3:D4, C2*C12, C3*D4, C3*Q8, S4, C2*A4, C2^2*S3, C2^2*C6 ] > GroupName(AlternatingGroup(10): TeX:=true); A_{10}
A finite group from its name. See GroupName and the example below.
> G0:=Group("C10^2*C3"); // cyclic and abelian > G1:=Group("D5"); // dihedral Dn of order 2n > G2:=Group("A5"); // alternating > G3:=Group("S5"); // symmetric > > G4:=Group("SL(2,3)"); // linear: GL, SL, AGL, ASL, AGammaL, ASigmaL, PGL, > G5:=Group("SL(2,F3)"); // PSL (=L), PGammaL, PSigmaL, SU, PSU, PGammaU, > G6:=Group("SL_2(3)"); // PSigmaU, O (=GO), SO, PSO, PGO, PGO+, PGO-, > G7:=Group("SL2(3)"); // POmega, POmega+, POmega-, Sp, PSp, PSigmaSp > > G8:=Group("S3*GL(4,2)"); // Products > G9:=Group("C41:C40"); // Split extensions that are not direct products, > // [usually with largest action of the quotient group] > G10:=Group("A5wrC2"); // Wreath products > > G11:=Group("C2^3.C4"); // unique names returned by GroupName > // when |G|<512, not multiple of 128 > G12:=Group("A5*A_5*A_{5}*Alt(5)"); // name variations > G13:=Group("D10:C8.C2*C3"); // operator order ^ > wr > : > . > * > // (so read left to right in this example) > > G14:=Group("<12,1>"); // Small group database (C3:C4) > G14:=Group("g12n1"); // same group > G15:=Group("T<12,48>"); // Transitive group database (C2^2*S4) > G15:=Group("t12n48"); // same group > // Simple groups: Lie Type A,B,C,D,E,F,G, returned > G16:=Group("C(4,2)"); // as matrix groups via standard representation Warning: Projective representation > G17:=Group("Sz(32)"); // Simple groups: Suzuki > G18:=Group("J1*Co3*M11"); // Simple groups: sporadic > G19:=Group("PGL(4,3)`2"); // Names from the almost simple group database > > G20:=Group("He11"); // Heisenberg > G21:=Group("F13"); // Frobenius group Fn of order n(n-1) > G22:=Group("Q8"); // Quasi-cyclic groups of normal 2-rank one: > G23:=Group("SD16"); // Dihedral, (generalized) quaternion, > G24:=Group("OD16"); // semi-dihedral, the `other-dihedral' one. > > [GroupName(eval "G"*Sprint(n)): n in [1..24]]; // back to names [ D5, A5, S5, SL(2,3), SL(2,3), SL(2,3), SL(2,3), S3*A8, F41, A5wrC2, C2^3.C4, A5^4, C3*D10:C8.C2, C3:C4, C2^2*S4, C(4,2), 2B(2,32), J1*Co3*M11, PSL(4,3).C2^2, He11, F13, Q8, SD16, OD16 ]