Conjugacy

The functions described in this section require the existence of a nilpotent covering group. They are based on algorithms published in [Lo98].

IsConjugate(G, g, h) : GrpGPC, GrpGPCElt, GrpGPCElt -> BoolElt, GrpGPCElt
Given elements g and h and a group G, which are contained in some nilpotent common group, return the value true if there exists c∈G such that gc = h. If so, the function returns such a conjugating element as second value.
IsConjugate(G, H, K) : GrpGPC, GrpGPC, GrpGPC -> BoolElt, GrpGPCElt
Given groups G, H and K with a nilpotent common covering group, return the value true if there exists c∈G such that Hc = K. If so, the function returns such a conjugating element as second value.

Example GrpGPC_Conjugacy (H79E12)

We again consider the nilpotent group G := D16 wreath 2.
> F<t, a,b, c,d> := FreeGroup(5);
> G<t, a,b, c,d> := quo<GrpGPC: F | a^2, b^16, b^a=b^15,
>                                   c^2, d^16, d^c=d^15,
>                      t^2, a^t=c, b^t=d, c^t=a, d^t=b>;
> IsNilpotent(G);
true
Since G is nilpotent, a test for conjugacy in G is available.

We define the following subgroups of G: D1 generated by a and b, D2 generated by c and d and D3 generated by ac and bd.

> D1 := sub<G|a,b>;
> D2 := sub<G|c,d>;
> D3<u,v> := sub<G|a*c, b*d>;
>
D1 and D2 are, of course, conjugate in G; t is a conjugating element.
> IsConjugate(G, D1, D2);
true t
The elements b and d - 1 are conjugate in G; we compute a conjugating element.
> IsConjugate(G, b, d^-1);
true t * a * c
However, neither the subgroups D1 and D2 nor the elements b and d - 1, are conjugate in the subgroup D3.
> IsConjugate(D3, D1, D2);
false
> IsConjugate(D3, b, d^-1);
false
V2.28, 13 July 2023