Group Representations

A K[G]-module corresponds to a representation of G, that is, a homomorphism phi : G -> GL(n, K). While the theory of representations is largely done using the language of K[G]-modules it is sometime useful to switch to the language of representations. This section describes intrinsics that enable the user to move from one language to the other.

GModuleAction(M) : ModGrp -> Map(Hom)
Given a K[G]-module M, return the action of G on M as homomorphism f of G into the matrix group GLn(K).
Representation(M) : ModGrp -> Map(Hom)
Given a K[G]-module M, return the action of G on M as homomorphism f of G into the matrix algebra Mn(K).

Example ModAlg_Representation (H97E12)

The function Representation allows the easy calculation of group characters. We illustrate this with the 6-dimension module for the group A7 constructed above.
> A7 := AlternatingGroup(7);
> M  := PermutationModule(A7, Vector(GF(11), [1,0,1,0,1,0,1]));
> phi := Representation(M);
> [ Trace(phi(c[3])) : c in Classes(A7) ];
[ 7, 3, 4, 1, 1, 2, 0, 0, 0 ]

Example ModAlg_Dual (H97E13)

We present a procedure which, given a K[G]-module M, constructs its dual D.
> DualModule := function(M)
>       G := Group(M);
>       f := Representation(M);
>       return GModule(G, [ Transpose(f(G.i))^-1 : i in [1 .. Ngens(G)] ]);
> end function;
Kernel(M) : ModGrp -> Grp
Given a K[G]-module M, where K is a finite field, return the kernel of the group homomorphism defined by Representation(M).
GModuleOfQuotient(M, H) : ModGrp, Grp -> ModGrp
Given a K[G]-module M, where K is a finite field, and a subgroup H of the kernel of the representation afforded by M, return M as a (G/H)-module.
ActionGenerator(M, i) : ModGrp, RngIntElt -> AlgMatElt
RightActionGenerator(M, i) : ModGrp, RngIntElt -> AlgMatElt
The i-th generator of the (right) acting matrix algebra for the module M. That is, the image of the i-th group generator in the corresponding representation.
ActionGenerators(M) : ModGrp -> [ AlgMatElt ]
Return the matrices giving the action on the module M as a sequence. These are the images of the generators of the group in the corresponding representation.
NumberOfActionGenerators(M) : ModGrp -> RngIntElt
Nagens(M) : ModGrp -> RngIntElt
The number of action generators (the number of generators of the algebra) for the R[G]-module M.
ActionGroup(M) : ModGrp -> GrpMat
The matrix group generated by the action generators of M.
Sections(G) : GrpMat -> List
Given a matrix group G defined over a finite field K, return the action of G on each composition factor of the natural K[G]-module for G.

Example ModAlg_Sections (H97E14)

We construct the tensor square T of the natural module M of the matrix group G = SL(3, 5) and then determine the action of G on each composition factor of T.
> G := SL(3, 5);
> M := GModule(G);
> T := TensorProduct(M, M);
> A := ActionGroup(T);
> S := Sections(A);
> #S;
2
There are just two composition factors of T, the symmetric square and the exterior square of M.
> S[1];
MatrixGroup(3, GF(5))
Generators:
    [1 0 0]
    [0 2 0]
    [0 0 3]
    [0 1 0]
    [1 0 1]
    [1 0 0]
V2.28, 13 July 2023