The functions in this section are for elliptic curves defined over p-adic fields. They provide an interface to the same code for Tate's algorithm that is used for curves over number fields.
The conductor of the elliptic curve E defined over a p-adic field.
Implements Tate's algorithm for the elliptic curve E over a p-adic field. This intrinsic computes local reduction data and a local minimal model. The model is not required to be integral on input. Output is < P, vp(d), fp, cp, K, s > and Emin where P is the uniformizer of the ground field, vp(d) is the valuation of the local minimal discriminant, fp is the valuation of the conductor, cp is the Tamagawa number, K is the Kodaira Symbol, and s is false if the curve has non-split multiplicative reduction and true otherwise. Emin is an integral minimal model of E.
The local root number of the elliptic curve E (defined over a p-adic field).