- num
- num-int-ex-1
- num-int-ex-2
- num-int-ex-3
- Number
- NumberOfFields(D) : DB -> RngIntElt
- # D : DB -> RngIntElt
- # D : DB -> RngIntElt
- # D : DB -> RngIntElt
- # D : DB -> RngIntElt
- # D : DB -> RngIntElt
- # D : DB -> RngIntElt
- # D : DB -> RngIntElt
- # D : DB -> RngIntElt
- # D: DB -> RngIntElt
- AbsoluteRootNumber(K) : FldPad -> FldCycElt
- BernoulliNumber(n) : RngIntElt -> FldRatElt
- BernoulliNumber(n) : RngIntElt -> FldRatElt
- BettiNumber(E, i) : CrvEll, RngIntElt -> RngIntElt
- BettiNumber(M, i, j) : ModMPol, RngIntElt, RngIntElt -> RngIntElt
- BettiNumber(X,q) : SmpCpx, RngIntElt -> RngIntElt
- BogomolovNumber(X) : GRFano -> FldRatElt
- CellNumber(P, h, x) : StkPtnOrd, RngIntElt, RngIntElt -> RngIntElt
- ChernNumber(S,n) : Srfc, RngIntElt -> RngIntElt
- ChromaticNumber(G) : GrphUnd -> RngIntElt
- ClassNumber(C) : Crv[FldFin] -> RngIntElt
- ClassNumber(F) : FldFun -> RngIntElt
- ClassNumber(F) : FldFunG -> RngIntElt
- ClassNumber(K) : FldQuad -> RngIntElt
- ClassNumber(Q: parameters) : QuadBin -> RngIntElt
- ClassNumber(O: parameters) : RngOrd -> RngIntElt
- ClassNumber(O) : RngFunOrd -> RngIntElt
- ClassNumberApproximation(F, e) : FldFunG, FldReElt -> FldReElt
- ClassNumberApproximationBound(q, g, e) : RngIntElt, RngIntElt, FldReElt, -> RngIntElt
- CliqueNumber(G : parameters) : GrphUnd -> RngIntElt
- CompositionTreeFactorNumber(G, g) : Grp, GrpElt -> RngIntElt
- ConnectionNumber(D, p, B) : Inc, IncPt, IncBlk -> RngIntElt
- CoxeterNumber(W) : GrpFPCox -> SeqEnum
- CoxeterNumber(G) : GrpLie -> RngIntElt
- CoxeterNumber(W) : GrpMat -> SeqEnum
- Dimension(C) : Code -> RngIntElt
- EpsilonFactor(A,infty) : ArtRep, Infty -> FldComElt
- EulerianNumber(n, r) : RngIntElt, RngIntElt -> RngIntElt
- GaussNumber(n, v) : RngIntElt, RngElt -> RngElt
- GeneralizedFibonacciNumber(g0, g1, n) : RngIntElt, RngIntElt, RngIntElt -> RngIntElt
- GeneralizedFibonacciNumber(g0, g1, n) : RngIntElt, RngIntElt, RngIntElt -> RngIntElt
- GeneratorNumber(w) : GrpFPElt -> RngIntElt
- HarmonicNumber(n) : RngIntElt -> FldRatElt
- HermiteNumber(L) : Lat -> FldReElt
- HirschNumber(G) : GrpGPC -> RngIntElt
- HirschNumber (G) : GrpMat -> RngIntElt
- HodgeNumber(S,i,j) : Srfc, RngIntElt, RngIntElt -> RngIntElt
- IdentificationNumber(D, i): DB, RngIntElt -> RngIntElt
- IndependenceNumber(G: parameters) : GrphUnd -> RngIntElt
- IntersectionNumber(D1,D2) : DivSchElt, DivSchElt-> FldRatElt
- IntersectionNumber(D, i, j) : Dsgn, RngIntElt, RngIntElt -> RngIntElt
- IntersectionNumber(C,D,p) : Sch,Sch,Pt -> RngIntElt
- IntersectionNumberOfStrictTransforms(S,D1,D2) : Srfc, Sch, Sch -> RngIntElt
- IsNumberField(R) : . -> BoolElt
- IsolNumberOfDegreeField(n, p) : RngIntElt, RngIntElt -> RngIntElt
- IsometryGroupNumberOfClasses(type, n): MonStgElt, RngIntElt -> RngUPolElt
- KissingNumber(L) : Lat -> RngElt
- KostkaNumber(S, C) : SeqEnum[RngIntElt], SeqEnum[RngIntElt] -> RngIntElt
- LocalIntersectionNumber(e) : GrphEdge -> RngIntElt
- MagicNumber(C) : GRCrvS -> RngIntElt
- MaximalNumberOfCosets(P) : GrpFPCosetEnumProc -> RngIntElt
- MilnorNumber(f) : RngMPolElt -> RngElt
- MilnorNumberAnalyticHypersurface(dat) : Rec -> RngIntElt
- MinimalChernNumber(S,n) : Srfc, RngIntElt -> RngIntElt
- MinusTamagawaNumber(M) : ModSym -> RngIntElt
- NFaces(G) : GrphMultUnd -> RngIntElt
- NFaces(G) : GrphUnd -> RngIntElt
- Ngens(M) : ModDed -> RngIntElt
- NormalNumber(C) : GRCrvS -> RngIntElt
- Number(D,X) : DB,GRK3 -> RngIntElt,GRK3
- NumberField(A) : FldAb -> FldNum
- NumberField(F) : FldOrd -> FldNum
- NumberField(P) : PlcNum -> FldNum
- NumberField(P) : PlcNum -> FldNum
- NumberField(P) : PlcNumElt -> FldNum
- NumberField(P) : PlcNumElt -> FldNum
- NumberField(O) : RngOrd -> FldNum
- NumberField(O) : RngQuad -> FldQuad
- NumberField(f) : RngUPolElt -> FldNum
- NumberField(f) : RngUPolElt -> FldNum
- NumberField(e) : SubFldLatElt -> FldNum
- NumberField(s) : [ RngUPolElt ] -> FldNum
- NumberField(s) : [ RngUPolElt ] -> FldNum
- NumberFieldDatabase(d) : RngIntElt -> DB
- NumberFieldLattice(K, d) : FldNum, RngIntElt -> LatNF
- NumberFieldLattice(D) : ModDed -> LatNF
- NumberFieldLattice(S) : [ModTupFldElt] -> LatNF
- NumberFieldLatticeWithGram(F) : Mtrx -> LatNF
- NumberFieldSieve(n, F, m1, m2) : RngIntElt, RngMPolElt, RngIntElt, RngIntElt -> RngIntElt
- NumberFields(D) : DB -> [ FldNum ]
- NumberFields(D, d) : DB, RngIntElt -> [ FldNum ]
- NumberOfActionGenerators(L) : Lat -> RngIntElt
- NumberOfActionGenerators(M) : ModGrp -> RngIntElt
- NumberOfActionGenerators(M) : ModRng -> RngIntElt
- NumberOfAffinePatches(X) : Sch -> BoolElt
- NumberOfAlgebraicGenerators(G) : GrpLie -> RngIntElt
- NumberOfAntisymmetricForms(L) : Lat -> RngIntElt
- NumberOfBlocks(D) : Inc -> RngIntElt
- NumberOfBlowUpDivisors(dsd) : DesingData -> RngIntElt
- NumberOfCells(P, h) : StkPtnOrd, RngIntElt -> RngIntElt
- NumberOfClasses(R) : AlgChtr -> RngIntElt
- NumberOfClasses(D) : DB -> RngIntElt
- NumberOfClasses(G) : GrpFin -> RngIntElt
- NumberOfClasses(G) : GrpMat -> RngIntElt
- NumberOfClasses(G) : GrpPC -> RngIntElt
- NumberOfClasses(G) : GrpPerm -> RngIntElt
- NumberOfColumns(a) : AlgMatElt -> RngIntElt
- NumberOfColumns(u) : ModTupFldElt -> RngIntElt
- NumberOfColumns(A) : Mtrx -> RngIntElt
- NumberOfColumns(A) : MtrxSprs -> RngIntElt
- NumberOfComponents(C) : SetCart -> RngIntElt
- NumberOfComponents(K) : SymKod -> RngIntElt
- NumberOfConstantWords(C, i) : Code, RngIntElt -> RngIntElt
- NumberOfConstraints(L) : LP -> RngIntElt
- NumberOfCoordinates(X) : Sch -> RngIntElt
- NumberOfCurves(D, N) : DB, RngIntElt -> RngIntElt
- NumberOfCurves(D, N, i) : DB, RngIntElt, RngIntElt -> RngIntElt
- NumberOfDivisors(n) : RngIntElt -> RngIntElt
- NumberOfEdges(P) : TorPol -> RngIntElt
- NumberOfExtensions(R, n) : RngPad, RngIntElt -> RngIntElt
- NumberOfFaces(P,i) : TorPol,RngIntElt -> RngIntElt
- NumberOfFacets(P) : TorPol -> RngIntElt
- NumberOfFields(D, d) : DB, RngIntElt -> RngIntElt
- NumberOfFixedSpaces(x, s) : GrpMatElt, RngIntElt -> RngIntElt
- NumberOfGenerators(B) : AlgBas -> RngIntElt
- NumberOfGenerators(L) : AlgLieExtr -> RngIntElt
- NumberOfGenerators(R) : AlgMat -> { AlgMatElt }
- NumberOfGenerators(C) : Code -> RngIntElt
- NumberOfGenerators(G) : Grp -> RngIntElt
- NumberOfGenerators(A) : GrpAb -> RngIntElt
- NumberOfGenerators(A) : GrpAbGen -> RngIntElt
- NumberOfGenerators(A) : GrpAutCrv -> RngIntElt
- NumberOfGenerators(A) : GrpAuto -> RngIntElt
- NumberOfGenerators(G) : GrpBB -> RngIntElt
- NumberOfGenerators(B) : GrpBrd -> RngIntElt
- NumberOfGenerators(G) : GrpDrch -> RngIntElt
- NumberOfGenerators(G) : GrpFP -> RngIntElt
- NumberOfGenerators(P) : GrpFPTietzeProc -> RngIntElt
- NumberOfGenerators(G) : GrpGPC -> RngIntElt
- NumberOfGenerators(G) : GrpLie -> RngIntElt
- NumberOfGenerators(G) : GrpMat -> RngIntElt
- NumberOfGenerators(G) : GrpPC -> RngIntElt
- NumberOfGenerators(G) : GrpPerm -> RngIntElt
- NumberOfGenerators(G) : GrpRWS -> RngIntElt
- NumberOfGenerators(G) : GrpRWS -> RngIntElt
- NumberOfGenerators(G) : GrpSLP -> RngIntElt
- NumberOfGenerators(M) : ModTupFld -> RngIntElt
- NumberOfGenerators(M) : MonRWS -> RngIntElt
- NumberOfGenerators(H) : SetPtEll -> RngIntElt
- NumberOfGenerators(H) : SetPtEll -> RngIntElt
- NumberOfGenerators(S) : SgpFP -> RngIntElt
- NumberOfGenerators(T) : TenSpc -> RngIntElt
- NumberOfGradings(C) : RngCox -> RngIntElt
- NumberOfGradings(X) : Sch -> RngIntElt
- NumberOfGradings(X) : Sch -> RngIntElt
- NumberOfGraphs(D) : DB -> RngIntElt
- NumberOfGraphs(D, S) : DB, SeqEnum -> RngIntElt
- NumberOfGroups(D, d) : DB, RngIntElt -> RngIntElt
- NumberOfGroups(D, d) : DB, RngIntElt -> RngIntElt
- NumberOfGroups(D, d) : DB, RngIntElt -> RngIntElt
- NumberOfGroups(D, d) : DB, RngIntElt -> RngIntElt
- NumberOfGroups(D, o) : DB, RngIntElt -> RngIntElt
- NumberOfGroups(D, o1, o2): DB, RngIntElt, RngIntElt -> RngIntElt, RngIntElt
- NumberOfGroups4P(o) : RngIntElt -> RngIntElt
- NumberOfInclusions(e, f) : SubGrpLatElt, SubGrpLatElt -> RngIntElt
- NumberOfInvariantForms(G) : GrpMat -> RngIntElt, RngIntElt
- NumberOfInvariantForms(L) : Lat -> RngIntElt, RngIntElt
- NumberOfIrreducibleMatrixGroups(k, p) : RngIntElt, RngIntElt -> RngIntElt
- NumberOfIsogenyClasses(D, N) : DB, RngIntElt -> RngIntElt
- NumberOfLattices(D, N): DB, MonStgElt -> RngIntElt
- NumberOfLattices(D, d): DB, RngIntElt -> RngIntElt
- NumberOfLevels( V ) : LatLat -> RngIntElt
- NumberOfLines(P) : Plane -> RngIntElt
- NumberOfMatrices(D, n) : DB, RngIntElt -> RngIntElt
- NumberOfMetacyclicPGroups(p, n): RngIntElt, RngIntElt -> SeqEnum
- NumberOfNewformClasses(M : parameters) : ModFrm -> RngIntElt
- NumberOfNonZeroEntries(A) : Mtrx -> RngIntElt
- NumberOfNonZeroEntries(A) : MtrxSprs -> RngIntElt
- NumberOfPCGenerators(A) : GrpAuto -> RngIntElt
- NumberOfPCGenerators(G) : GrpPC -> RngIntElt
- NumberOfPCGenerators(P) : GrpPCpQuotientProc -> RngIntElt
- NumberOfPartitions(n) : RngIntElt -> RngIntElt
- NumberOfPartitions(n) : RngIntElt -> RngIntElt
- NumberOfPermutations(n, k) : RngIntElt, RngIntElt -> RngIntElt
- NumberOfPlacesOfDegreeOne(m, U) : DivFunElt, GrpAb -> RngIntElt
- NumberOfPlacesOfDegreeOne(A) : FldFunAb -> RngIntElt
- NumberOfPlacesOfDegreeOneECFBound(C) : Crv -> RngIntElt
- NumberOfPlacesOfDegreeOneECFBound(F) : FldFunG -> RngIntElt
- NumberOfPlacesOfDegreeOneOverExactConstantField(C) : Crv[FldFin] -> RngIntElt
- NumberOfPlacesOfDegreeOneOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
- NumberOfPlacesOfDegreeOneOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
- NumberOfPlacesOfDegreeOneOverExactConstantField(F) : FldFunG -> RngIntElt
- NumberOfPlacesOfDegreeOneOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
- NumberOfPlacesOfDegreeOneOverExactConstantFieldBound(F, m) : FldFun, RngIntElt -> RngIntElt
- NumberOfPlacesOfDegreeOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
- NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
- NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
- NumberOfPoints(D) : Inc -> RngInt
- NumberOfPoints(P) : Plane -> RngIntElt
- NumberOfPoints(P) : TorPol -> RngIntElt
- NumberOfPointsAtInfinity(C) : CrvHyp -> RngIntElt
- NumberOfPointsOnCubicSurface(f) : RngMPolElt -> RngIntElt, RngIntElt
- NumberOfPointsOnMinimalResolutionFibre(dsd) : DesingData -> RngIntElt
- NumberOfPointsOnResolutionFibre(dsd) : DesingData -> RngIntElt
- NumberOfPointsOnSurface(E, e) : CrvEll, RngIntElt -> RngIntElt
- NumberOfPositiveRoots(C) : AlgMatElt -> RngIntElt
- NumberOfPositiveRoots(W) : GrpFPCox -> RngIntElt
- NumberOfPositiveRoots(G) : GrpLie -> RngIntElt
- NumberOfPositiveRoots(W) : GrpMat -> RngIntElt
- NumberOfPositiveRoots(W) : GrpPermCox -> RngIntElt
- NumberOfPositiveRoots(N) : MonStgElt -> .
- NumberOfPositiveRoots(R) : RootStr -> RngIntElt
- NumberOfPositiveRoots(R) : RootSys -> RngIntElt
- NumberOfPrimePolynomials(q, d) : RngIntElt, RngIntElt -> RngIntElt
- NumberOfPrimitiveGroups(d) : RngIntElt -> RngIntElt
- NumberOfProjectives(B) : AlgBas -> RngIntElt
- NumberOfPunctures(C): CrvPln -> RngIntElt
- NumberOfQubits(H) : HilbSpc -> RngIntElt
- NumberOfQuotientGradings(C) : RngCox -> RngIntElt
- NumberOfQuotientGradings(X) : TorVar -> RngIntElt
- NumberOfRationalPoints(A) : ModAbVar -> RngIntElt, RngIntElt
- NumberOfRelations(P) : GrpFPTietzeProc -> RngIntElt
- NumberOfRelations(G) : GrpRWS -> RngIntElt
- NumberOfRelations(M) : MonRWS -> RngIntElt
- NumberOfRelationsRequired(P) : NFSProc -> RngIntElt
- NumberOfRepresentations(D, i): DB, RngIntElt -> RngIntElt
- NumberOfResults() : -> RngIntElt, [ BoolElt ]
- NumberOfRows(a) : AlgMatElt -> RngIntElt
- NumberOfRows(u) : ModTupFldElt -> RngIntElt
- NumberOfRows(A) : Mtrx -> RngIntElt
- NumberOfRows(A) : MtrxSprs -> RngIntElt
- NumberOfRows(t) : Tbl -> RngIntElt
- NumberOfSimpleGroups() : -> RngIntElt
- NumberOfSkewRows(t) : Tbl -> RngIntElt
- NumberOfSmallGroups(o) : RngIntElt -> RngIntElt
- NumberOfSmoothDivisors(n, m, P) : RngIntElt, RngIntElt, SeqEnum[RngElt] -> RngElt
- NumberOfStandardTableaux(P) : SeqEnum -> RngIntElt
- NumberOfStandardTableauxOnWeight(n) : RngIntElt -> RngIntElt
- NumberOfStrings(B) : GrpBrd -> RngIntElt
- NumberOfStrongGenerators(G) : GrpMat -> RngIntElt
- NumberOfStrongGenerators(G) : GrpPerm -> RngIntElt
- NumberOfStrongGenerators(G, i) : GrpPerm, RngIntElt -> RngIntElt
- NumberOfSubgroupsAbelianPGroup (A) : SeqEnum -> SeqEnum
- NumberOfSymmetricForms(L) : Lat -> RngIntElt
- NumberOfTableauxOnAlphabet(P, m) : SeqEnum,RngIntElt -> RngIntElt
- NumberOfTransitiveGroups(d) : RngIntElt -> RngIntElt
- NumberOfVariables(L) : LP -> RngIntElt
- NumberOfVariants(N) : NfdDck -> RngIntElt
- NumberOfVariants(q, v) : RngIntElt, RngIntElt -> RngIntElt
- NumberOfVertices(P) : TorPol -> RngIntElt
- NumberOfWords(C, w) : Code, RngIntElt -> RngIntElt
- NumberOfWords(C, w) : Code, RngIntElt -> RngIntElt
- Order(G) : Grph -> RngIntElt
- Order(G) : GrphMult -> RngIntElt
- PicardGroup(O) : RngQuad -> GrpAb, Map
- PseudoDimension(C) : Code -> RngIntElt
- QuarticNumberOfRealRoots(q) : RngUPolElt -> RngUPolElt
- Rank(W) : GrpFPCox -> RngIntElt
- Rank(W) : GrpMat -> RngIntElt
- RationalsAsNumberField() : -> FldNum
- RationalsAsNumberField() : -> FldNum
- RealTamagawaNumber(M) : ModSym -> RngIntElt
- ReplicationNumber(D) : Dsgn -> RngIntElt
- RepresentationNumber(f, n) : QuadBinElt, RngIntElt -> RngIntElt
- RootNumber(A) : ArtRep -> FldComElt
- RootNumber(A,p) : ArtRep, RngIntElt -> FldComElt
- RootNumber(E) : CrvEll -> RngIntElt
- RootNumber(E) : CrvEll -> RngIntElt
- RootNumber(E) : CrvEll -> RngIntElt
- RootNumber(E, p) : CrvEll, RngIntElt -> RngIntElt
- RootNumber(E, P) : CrvEll, RngOrdIdl -> RngIntElt
- RootNumber(K) : FldPad -> FldCycElt
- RootNumber(A) : GalRep -> FldComElt
- RootNumber(GR) : GrossenChar -> SeqEnum
- RootNumber(GR, p) : GrossenChar, RngIntElt -> FldComElt
- RootNumber(GR, P) : GrossenChar, RngOrgIdl -> FldComElt
- RootNumber(HS) : HodgeStruc -> FldCycElt
- SClassNumber(S) : SetEnum[PlcFunElt] -> RngIntElt
- ShephardToddNumber(X, n) : MonStgElt, RngIntElt -> RngIntElt
- SimpleGroupIDToNumber(T) : Tup -> RngIntElt
- SimpleGroupNameToNumber(S) : MonStgElt -> RngIntElt
- Size(G) : Grph -> RngIntElt
- Size(G) : GrphMult -> RngIntElt
- TamagawaNumber(E, p) : CrvEll, RngIntElt -> RngIntElt
- TamagawaNumber(A) : ModAbVar -> RngIntElt, RngIntElt, BoolElt
- TamagawaNumber(A, p) : ModAbVar, RngIntElt -> RngIntElt, RngIntElt, BoolElt
- TamagawaNumber(M, p) : ModSym, RngIntElt -> RngIntElt
- TjurinaNumber(f) : RngMPolElt -> RngElt
- TotalNumberOfCosets(P) : GrpFPCosetEnumProc -> RngIntElt
V2.28, 13 July 2023