Building Groups of Lie Type

Currently the only subgroups of a group of Lie type that can be constructed are subsystem subgroups.

SubsystemSubgroup(G, a) : GrpLie, SetEnum -> RootDtm
The subsystem subgroup of the group of Lie type G generated by the standard maximal torus and the root subgroups with roots αa1, ..., αak where a={a1, ..., ak} is a set of integers.
SubsystemSubgroup(G, s) : GrpLie, SeqEnum -> RootDtm
The subsystem subgroup of the group of Lie type G generated by the standard maximal torus and the root subgroups with roots αs1, ..., αsk where s=[s1, ..., sk] is a sequence of integers. In this version the roots must be simple in the root subdatum (i.e. none of them may be a summand of another) otherwise an error is signalled. The simple roots will appear in the subdatum in the given order.

Example GrpLie_RootSubdata (H110E17)

> G := GroupOfLieType("A4",Rationals());
> PositiveRoots(G);
{@
    (1 0 0 0),
    (0 1 0 0),
    (0 0 1 0),
    (0 0 0 1),
    (1 1 0 0),
    (0 1 1 0),
    (0 0 1 1),
    (1 1 1 0),
    (0 1 1 1),
    (1 1 1 1)
@}
> H := SubsystemSubgroup(G, [6,1,4]);
> H;
H: Group of Lie type A3 over Rational Field
> PositiveRoots(H);
{@
    (0 1 1 0),
    (1 0 0 0),
    (0 0 0 1),
    (1 1 1 0),
    (0 1 1 1),
    (1 1 1 1)
@}
> h := elt<H|<2,2>,1>;
> h;  G!h;
x2(2) n1
x1(2) ( 1 -1  1 -1) n2 n3 n2
DirectProduct(G1, G2) : GrpLie, GrpLie -> GrpLie
The direct product of the groups G1 and G2. The two groups must have the same base ring.
Dual(G) : GrpLie -> GrpLie
The dual of the group of Lie type G, obtained by swapping the roots and coroots.
SolubleRadical(G) : GrpLie -> GrpLie
The soluble radical of the group of Lie type G.
StandardMaximalTorus(G) : GrpLie -> GrpLie
The standard maximal torus of the group of Lie type G.

Example GrpLie_DirectProductDualRadical (H110E18)

> G1 := GroupOfLieType( "A5", GF(7) );
> G2 := GroupOfLieType( "B4", GF(7) );
> DirectProduct(G1, Dual(G2));
$: Group of Lie type A5 C4 over Finite field of size 7
>
> G := GroupOfLieType(StandardRootDatum("A",3), GF(17));
> SolubleRadical(G);
$: Torus group of Dimension 1 over Finite field of size 17
V2.28, 13 July 2023