- RightAction
- RightActionGenerator
- RightAdjointMatrix
- RightAnnihilator
- RightBimodule
- RightCosetSpace
- RightDescentSet
- RightDomain
- RightExactExtension
- RightGCD
- RightGcd
- RightGreatestCommonDivisor
- RightHandFactors
- RightIdeal
- RightIdealClasses
- RightInverse
- RightInverseMorphism
- RightIsomorphism
- RightLCM
- RightLcm
- RightLeastCommonMultiple
- RightMixedCanonicalForm
- RightModule
- RightNormalForm
- RightNucleus
- RightOrder
- RightRegularModule
- RightRepresentationMatrix
- RightString
- RightString(W, r, s) : GrpPermCox, RngIntElt, RngIntElt -> RngIntElt
- RightString(R, r, s) : RootDtm, RngIntElt, RngIntElt -> RngIntElt
- RightString(R, r, s) : RootSys, RngIntElt, RngIntElt -> RngIntElt
- RightStringLength
- RightStringLength(W, r, s) : GrpPermCox, RngIntElt, RngIntElt -> RngIntElt
- RightStringLength(R, r, s) : RootDtm, RngIntElt, RngIntElt -> RngIntElt
- RightStringLength(R, r, s) : RootSys, RngIntElt, RngIntElt -> RngIntElt
- RightTransversal
- RightTransversal(G, H) : Grp, Grp -> {@ GrpElt @}, Map
- Transversal(G, H) : Grp, Grp -> {@ GrpElt @}, Map
- Transversal(G, H) : GrpAb, GrpAb -> {@ GrpAbElt @}, Map
- Transversal(G, H) : GrpFP, GrpFP -> {@ GrpFPElt @}, Map
- Transversal(G, H) : GrpGPC, GrpGPC -> {@ GrpGPCElt @}, Map
- Transversal(G, H) : GrpMat, GrpMat -> {@ GrpMatElt @}, Map
- Transversal(G, H) : GrpPC, GrpPC -> {@ GrpPCElt @}, Map
- Transversal(G, H) : GrpPerm, GrpPerm -> {@ GrpPermElt atbrace, Map
- RightZeroExtension
- Ring
- AbsoluteQuotientRing(A) : FldAC -> RngUPolRes
- AbsoluteAffineAlgebra(A) : FldAC -> RngUPolRes
- AddRingRelations(Q, R) : L2Quotient, [ RngMPolElt ] -> [ L2Quotient ]
- AffineAlgebra(A) : FldAC -> RngMPolRes
- BaseField(A) : AlgQuat -> Fld
- BaseField(A) : JacHyp -> Fld
- BaseField(J) : JacHyp -> Fld
- BaseField(M) : ModFrmBianchi -> FldNum
- BaseField(M) : ModFrmHil ->
- BaseField(R) : RootSys -> Fld
- BaseField(C) : Sch -> Fld
- BaseField(K) : SrfKum -> Fld
- BaseRing(O) : AlgAssVOrd -> Rng
- BaseRing(B) : AlgBas -> Rng
- BaseRing(F) : AlgFr -> Rng
- BaseRing(R) : AlgMatV -> Rng
- BaseRing(L) : AlgSym -> Rng
- BaseRing(E) : CrvEll -> Rng
- BaseRing(A) : FldAb -> Rng
- BaseRing(F) : FldFun -> Rng
- BaseRing(FF) : FldFunOrd -> Rng
- BaseRing(F) : FldFunRat -> Rng
- BaseRing(G) : GrpDrch -> Rng
- BaseRing(chi) : GrpDrchElt -> Rng
- BaseRing(G) : GrpLie -> Rng
- BaseRing(G) : GrpLie -> Rng
- BaseRing(G) : GrpPSL2 -> Rng
- BaseRing(L) : Lat -> Rng
- BaseRing(L) : LatNF -> FldNum
- BaseRing(A) : ModAbVar -> Rng
- BaseRing(M) : ModBrdt -> Rng
- BaseRing(M) : ModDed -> Rng
- BaseRing(model) : ModelG1 -> Rng
- BaseRing(M) : ModFrm -> Rng
- BaseRing(M) : ModSS -> Rng
- BaseRing(A) : Mtrx -> Rng
- BaseRing(A) : MtrxSprs -> Rng
- BaseRing(C) : RngCox -> Fld
- BaseRing(R) : RngDiff -> Rng
- BaseRing(R) : RngDiffOp -> Rng
- BaseRing(O) : RngFunOrd -> Rng
- BaseRing(L) : RngLocA -> Rng
- BaseRing(P) : RngMPol -> Rng
- BaseRing(O) : RngOrd -> Rng
- BaseRing(L) : RngPad -> RngPad
- BaseRing(R) : RngPowLaz -> Rng
- BaseRing(R) : RngSer -> Rng
- BaseRing(R) : RngSLPol -> Rng
- BaseRing(P) : RngUPol -> Rng
- BaseRing(R) : RngUPolTwst -> Rng
- BaseRing(F) : RngUPolTwstElt -> Rng
- BaseRing(R) : RngUPolXPad -> Rng
- BaseRing(f) : RngUPolXPadElt -> Rng
- BaseRing(W) : RngWitt -> Fld
- BaseRing(R) : RngXPad -> RngXPad
- BaseRing(R) : RootDtm -> RngInt
- BaseRing(C) : Sch -> Rng
- BaseRing(X) : Sch -> Rng
- BaseRing(G) : SchGrpEll -> Rng
- BaseRing(T) : TenSpc -> Rng
- BaseRing(T) : TenSpcElt -> Rng
- BooleanPolynomialRing(n) : RngIntElt -> RngMPolBool
- BooleanPolynomialRing(n, order) : RngIntElt, MonStgElt -> RngMPolBool
- BooleanPolynomialRing(B, Q) : RngMPolBool, [RngIntElt] -> RngMPolBoolElt
- CanChangeRing(A, R) : ModAbVar, Rng -> BoolElt, ModAbVar
- CanChangeRing(A, R) : Mtrx, Rng -> BoolElt, Mtrx
- CanChangeRing(f, R) : RngUPolXPadElt, Rng -> BoolElt, RngUPolXPadElt
- CentreOfEndomorphismRing(G) : GrpMat -> AlgMat
- CentreOfEndomorphismRing(L) : Lat -> AlgMat
- CentreOfEndomorphismRing(M) : ModRng -> AlgMat
- ChangeRing(I, S) : AlgFr, Rng -> AlgFr
- ChangeRing(A, S) : AlgGen, Rng -> AlgGen, Map
- ChangeRing(A, S, f) : AlgGen, Rng, Map -> AlgGen, Map
- ChangeRing(L, S) : AlgLie, Rng -> AlgLie, Map
- ChangeRing(L, S, f) : AlgLie, Rng, Map -> AlgLie, Map
- ChangeRing(A, S) : AlgMatV, Rng -> AlgMat, Map
- ChangeRing(A, S, f) : AlgMatV, Rng, Map -> AlgMat, Map
- ChangeRing(U, R) : AlgQUE, Rng -> AlgQUE
- ChangeRing(U, S) : AlgUE, Rng -> AlgUE
- ChangeRing(E, K) : CrvEll, Rng -> CrvEll
- ChangeRing(G, K) : GrpLie, Rng -> GrpLie
- ChangeRing(G, S) : GrpMat, Rng -> GrpMat, Map
- ChangeRing(G, S, f) : GrpMat, Rng, Map -> GrpMat, Map
- ChangeRing(L, S) : Lat, Rng -> Lat, Map
- ChangeRing(A, R) : ModAbVar, Rng -> ModAbVar
- ChangeRing(model, R) : ModelG1, Rng -> ModelG1
- ChangeRing(M, S) : ModRng, Rng -> ModRng, Map
- ChangeRing(M, S) : ModRng, Rng -> ModRng, Map
- ChangeRing(M, S, f) : ModRng, Rng, Map -> ModRng, Map
- ChangeRing(M, S, f) : ModRng, Rng, Map -> ModRng, Map
- ChangeRing(A, R) : Mtrx, Rng -> Mtrx
- ChangeRing(A, R, f) : Mtrx, Rng, Map -> Mtrx
- ChangeRing(A, R) : MtrxSprs, Rng -> MtrxSprs
- ChangeRing(I, S) : RngMPol, Rng -> RngMPol
- ChangeRing(M, S) : RngMPol, Rng -> RngMPol
- ChangeRing(P, S) : RngMPol, Rng -> RngMPol
- ChangeRing(I, L) : RngMPolLoc, Rng -> RngMPolLoc
- ChangeRing(s,R) : RngPowAlgElt, RngMPol -> RngPowAlgElt
- ChangeRing(L, C) : RngPowLaz, Rng -> RngPowLaz, Map
- ChangeRing(R, C) : RngSer, Rng -> RngSer, Map
- ChangeRing(P, S) : RngUPol, Rng -> RngUPol, Map
- ChangeRing(P, S, f) : RngUPol, Rng, Map -> RngUPol, Map
- ChangeRing(C, K) : Sch, Rng -> Sch
- ChangeRing(g, R) : TransG1, Rng -> TransG1
- CharacterRing(R, p) : AlgChtr, RngIntElt -> AlgChtr
- CharacterRing(G, p) : Grp, RngIntElt -> AlgChtr
- ClassFunctionSpace(G) : Grp -> AlgChtr
- ClassFunctionSpace(Q) : SeqEnum -> AlgChtr
- CoefficientRing(A) : AlgFP -> Rng
- CoefficientRing(L) : AlgFPLie -> Rng
- CoefficientRing(A) : AlgGen -> Rng
- CoefficientRing(A) : AlgGrp -> Rng
- CoefficientRing(A) : AlgGrpSub -> Rng
- CoefficientRing(L) : AlgKac -> Rng
- CoefficientRing(L) : AlgLie -> Rng
- CoefficientRing(L) : AlgLieExtr -> Rng
- CoefficientRing(U) : AlgPBW -> Rng
- CoefficientRing(U) : AlgQUE -> Fld
- CoefficientRing(A) : FldAb -> Fld
- CoefficientRing(G) : GrpMat -> Rng
- CoefficientRing(M): ModAlg -> Fld
- CoefficientRing(M) : ModMPol -> ModMPol
- CoefficientRing(M) : ModRng -> Rng
- CoefficientRing(M) : ModTupRng -> Rng
- CoefficientRing(D) : PhiMod -> RngSerLaur
- CoefficientRing(R) : RngInvar -> Grp
- CoefficientRing(Q) : RngMPolRes -> Rng
- CoefficientRing(E) : RngSerExt -> Rng
- CoefficientRing (S) : SnuRng -> RngIntElt
- CoefficientRing(V) : SSGalRep -> FldFin
- CohomologyRing(k, n) : ModAlgBas, RngIntElt -> Rec
- CohomologyRingGenerators(P) : Rec -> Rec
- CohomologyRingQuotient(CR) : Rec -> Rng,Map
- ConstantRing(R) : RngDiff -> Rng
- ConstantRing(R) : RngDiffOp -> Rng
- CoordinateRing(L) : Lat -> RngInt
- CoordinateRing(A) : Sch -> Rng
- CoordinateRing(C) : Sch -> Rng
- CoordinateRing(A) : Sch -> RngMPol
- CoordinateRing(X) : Sch -> RngMPol
- CoxRing(k,F) : Fld,TorFan -> RngCox
- CoxRing(R,B,Z,Q) : RngMPol,SeqEnum,SeqEnum,SeqEnum -> RngCox
- CoxRing(X) : TorVar -> RngCox
- DefRing(G) : GrpLie -> Rng
- DifferentialLaurentSeriesRing(C) : Fld -> RngDiff
- DifferentialOperatorRing(F) : RngDiff -> RngDiffOp
- DifferentialRing(P, f, C) : Rng, Map, Rng -> RngDiff
- DifferentialRingExtension(L) : RngDiffOpElt -> RngDiff
- DimensionOfCentreOfEndomorphismRing(G) : GrpMat -> RngIntElt
- DimensionOfCentreOfEndomorphismRing(L) : Lat -> RngIntElt
- DimensionOfEndomorphismRing(G) : GrpMat -> RngIntElt
- DimensionOfEndomorphismRing(L) : Lat -> RngIntElt
- EndomorphismAlgebra(M) : ModRng -> AlgMat
- EndomorphismRing(A) : AnHcJac -> AlgMat, SeqEnum
- EndomorphismRing(G) : GrpMat -> AlgMat
- EndomorphismRing(L) : Lat -> AlgMat
- EndomorphismRing(P) : Mtrx -> AlgMat
- GaloisRing(q, d) : RngIntElt, RngIntElt -> RngGal
- GaloisRing(p, a, d) : RngIntElt, RngIntElt, RngIntElt -> RngGal
- GaloisRing(p, a, D) : RngIntElt, RngIntElt, RngUPol -> RngGal
- GaloisRing(q, D) : RngIntElt, RngUPol -> RngGal
- GeneratorsOverBaseRing(K) : FldNum -> FldNumElt
- GeneratorsSequenceOverBaseRing(K) : FldNum -> [FldNumElt]
- GroundField(F) : FldAlg -> Fld
- GroundField(F) : FldNum -> Fld
- HeckeEigenvalueRing(M : parameters) : ModSym -> Rng, Map
- IntegerRing() : -> RngInt
- IntegerRing(F) : FldFunRat -> RngPol
- IntegerRing(F) : FldPad -> RngPad
- IntegerRing(F) : RngFrac -> Rng
- IntegerRing(R) : RngSer -> RngSerPow
- IntegerRing(E) : RngSerExt -> RngSerExt
- Integers(O) : RngOrd -> RngOrd
- InvariantRing(G) : GrpMat -> RngInvar
- InvariantRing(I, A) : RngMPol, Mtrx -> RngInvar
- IsDifferentialLaurentSeriesRing(R) : Rng -> BoolElt
- IsDifferentialOperatorRing(R) : . -> BoolElt
- IsDifferentialSeriesRing(R) : Rng -> BoolElt
- IsDivisionRing(R) : Rng -> BoolElt
- IsEuclideanRing(R) : Rng -> BoolElt
- IsMagmaEuclideanRing(R) : Rng -> BoolElt
- IsMatrixRing(A) : AlgQuat -> BoolElt, AlgMat, Map
- IsPIR(R) : Rng -> BoolElt
- IsPrincipalIdealRing(F) : FldAlg -> BoolElt
- IsPrincipalIdealRing(F) : FldNum -> BoolElt
- IsPrincipalIdealRing(O) : RngOrd -> BoolElt
- IsRing(H) : HomModAbVar -> BoolElt
- IsRingHomomorphism(m) : Map -> BoolElt
- IsRingHomomorphism(m) : Map -> BoolElt
- IsRingOfAllModularForms(M) : ModFrm -> BoolElt
- LaurentSeriesRing(L) : AlgKac -> RngSerLaur
- LaurentSeriesRing(R) : Rng -> RngSerLaur
- LazyPowerSeriesRing(C, n) : Rng, RngIntElt -> RngPowLaz
- LocalPolynomialRing(K, n) : Rng, RngIntElt -> RngMPolLoc
- LocalPolynomialRing(K, n, order) : Rng, RngIntElt, MonStgElt, ... -> RngMPolLoc
- LocalPolynomialRing(K, n, T) : Rng, RngIntElt, Tup -> RngMPolLoc
- LocalRing(P, prec) : RngOrdIdl, RngIntElt -> RngLoc, Map
- LocalRing(P, k) : RngOrdIdl, RngIntElt -> RngPad, Map
- LocalRing(W) : RngWitt -> RngLoc, Map
- MatrixAlgebra(S, n) : Rng, RngIntElt -> AlgMat
- MatrixAlgebra<S, n | L> : Rng, RngIntElt, List -> AlgMat
- MatrixRing(A, eps) : AlgQuat, AlgQuatElt -> AlgMat, Map
- MaximalOrder(F) : FldNum -> RngOrd
- MaximalOrder(F) : FldQuad -> RngQuad
- MaximalOrder(Q) : FldRat -> RngInt
- MaximalOrder(O) : RngOrd -> RngOrd
- MinimalBaseRingCharacter(chi) : GrpDrchElt -> GrpDrchElt
- MultiplicatorRing(I): AlgAssVOrdIdl -> AlgAssVOrd
- MultiplicatorRing(I) : RngFunOrdIdl -> RngFunOrd
- MultiplicatorRing(I) : RngFunOrdIdl -> RngFunOrd
- MultiplicatorRing(I) : RngOrdFracIdl -> Rng
- OriginalRing(A) : AlgFP -> Rng
- OriginalRing(Q) : RngMPolRes -> Rng
- ParentRing(N) : NwtnPgon -> Rng
- PolynomialAlgebra(R) : Rng -> RngUPol
- PolynomialRing(model) : ModelG1 -> RngMPol
- PolynomialRing(R : parameters) : Rng -> RngUPol
- PolynomialRing(R, n) : Rng, RngIntElt -> RngMPol
- PolynomialRing(R, n) : Rng, RngIntElt -> RngMPol
- PolynomialRing(R, n, order) : Rng, RngIntElt, MonStgElt, ... -> RngMPol
- PolynomialRing(R, n, order) : Rng, RngIntElt, MonStgElt, ... -> RngMPol
- PolynomialRing(R, n, T) : Rng, RngIntElt, Tup -> RngMPol
- PolynomialRing(R, Q) : Rng, [ RngIntElt ] -> RngMPol
- PolynomialRing(R) : RngInvar -> RngMPol
- PowerSeriesRing(R) : Rng -> RngSerPow
- PreimageRing(A) : AlgFP -> AlgFr
- PreimageRing(Q) : RngMPolRes -> RngMPol
- PreimageRing(Q) : RngUPolRes -> RngUPol
- PrimeRing(F) : FldFun -> Rng
- PrimeRing(R) : Rng -> Rng
- PrimeRing(L) : RngPad -> RngPad
- PuiseuxSeriesRing(R) : Rng -> RngSerPuis
- QuaternionOrder(G) : GrpPSL2 -> AlgQuatOrd
- QuotientRing(R, I) : RngDiff, RngMPol -> RngDiff, Map
- RayResidueRing(D) : DivFunElt -> GrpAb, Map
- RayResidueRing(D) : DivNumElt -> GrpAb, Map
- RayResidueRing(I) : RngOrdIdl -> GrpAb, Map
- ResidueClassRing(m) : RngIntElt -> RngIntRes, Map
- ResidueClassRing(Q) : RngIntEltFact -> RngIntRes
- Ring(CM) : ModCoho -> ModGrp
- Ring(P) : SetPt -> Rng
- Ring(H) : SetPtEll -> Rng
- RingClassGroup(O) : RngOrd -> GrpAb, Map
- RingGeneratedBy(H) : HomModAbVar -> HomModAbVar
- RingMap(P) : SetPt -> Map
- RingOfFractions(R) : RngDiff -> RngDiff, Map
- RingOfFractions(Q) : RngMPolRes -> RngFunFrac
- RingOfIntegers(L) : FldXPad -> RngXPad
- RingOfIntegers(R) : RngPad -> RngPad
- SLPolynomialRing(R, n) : Rng, RngIntElt -> RngSLPol
- SetTargetRing(~chi, e) : GrpDrchNFElt, RngElt ->
- SnuRing (F) : FldPad -> SnuRng
- SnuRing (F, nu) : FldPad, FldRatElt -> SnuRng
- SnuRing (S, nu) : RngSerPow, FldRatElt -> SnuRng
- SnuRing (S) : SpRng -> SnuRng
- UnderlyingRing(F) : FldFunG -> FldFunG
- UnderlyingRing(C) : RngCox -> RngMPol
- UnderlyingRing(R) : RngDiff -> Rng
- UnramifiedQuotientRing(K, k) : FldFin, RngIntElt -> Rng
- ValuationRing(F) : FldFunRat -> RngVal
- ValuationRing(F) : FldFunRat -> RngVal
- ValuationRing(F, f) : FldFunRat, RngUPolElt -> RngVal
- ValuationRing(F, f) : FldFunRat, RngUPolElt -> RngVal
- ValuationRing(K, p) : FldNum, RngOrdIdl -> RngVal
- ValuationRing(Q, p) : FldRat, RngIntElt -> RngVal
- WittRing(F, n) : Fld, RngIntElt -> RngWitt
- pAdicQuotientRing(L, k) : FldXPad, RngIntElt -> RngPadRes, Map
- pAdicQuotientRing(p, k) : RngIntElt, RngIntElt -> RngPadRes
- pAdicRing(p : parameters) : RngIntElt -> FldXPad
- pAdicRing(p) : RngIntElt -> RngPad
- pAdicRing(p, k) : RngIntElt, RngIntElt -> RngPad
- pMatrixRing(A, p) : AlgQuat, RngOrdIdl -> AlgMat, Map, Map
V2.28, 13 July 2023