Parent(R) : RngSer -> Pow
Category(R) : RngSer -> Cat
CoefficientRing(R) : RngSer -> Rng
Return the coefficient ring of the series ring R.
Integers(R) : RngSer -> RngSerPow
RingOfIntegers(R) : RngSer -> RngSerPow
Return the power series ring which is the integer ring of the laurent series
ring R.
Return the laurent series ring which is the field of fractions of the
series ring R.
ChangePrecision(~R, r) : RngSer, Any -> RngSer
Return a series ring identical to the series ring R but having precision r.
Return the series ring identical to the series ring R but having coefficient
ring C.
Return the residue class field of the series ring R (which will be the same
as the coefficient ring of R) and the map from R into the residue class
field.
Characteristic(R) : RngSer -> RngIntElt
GetPrecision(R) : RngSer -> ExtReElt
Return the precision of the fixed precision series ring R.
If R is a fixed precision power series ring, then this is the
fixed absolute precision for all elements of the ring.
If R is a fixed precision Laurent series ring, then this is the
maximum relative precision for all elements of the ring.
IsCommutative(Q) : RngSer -> BoolElt
IsUnitary(Q) : RngSer -> BoolElt
IsFinite(Q) : RngSer -> BoolElt
IsOrdered(Q) : RngSer -> BoolElt
IsField(Q) : RngSer -> BoolElt
IsEuclideanDomain(Q) : RngSer -> BoolElt
IsPID(Q) : RngSer -> BoolElt
IsUFD(Q) : RngSer -> BoolElt
IsDivisionRing(Q) : RngSer -> BoolElt
IsEuclideanRing(Q) : RngSer -> BoolElt
IsPrincipalIdealRing(Q) : RngSer -> BoolElt
IsDomain(Q) : RngSer -> BoolElt
R eq S : RngSer, RngSer -> BoolElt
R ne S : RngSer, RngSer -> BoolElt
V2.28, 13 July 2023