This section deals with the underlying vector space of a module M, which is a module over the algebra A.
Given an A-module M and a positive integer i, return the i-th generator of M.
Given an A-module M, where A is an algebra over the field K, return K.
The generators for the A-module M, returned as a set.
Given an element u belonging to the A-module M, return M.
Given an A-module M, return the matrix algebra A giving the action of A on M.
Check: BoolElt Default: true
Given an R[G]-module M, return the matrix group whose generators are the (invertible) generators of the acting algebra of M.
The i-th generator of the (right) acting matrix algebra for the module M.
The number of action generators (the number of generators of the algebra) for the A-module M.
Given an R[G]-module M, return the group G.
> F2 := GF(2); > F := MatrixAlgebra(F2, 6); > A := sub< F | > [ 1,0,0,1,0,1, > 0,1,0,0,1,1, > 0,1,1,1,1,0, > 0,0,0,1,1,0, > 0,0,0,1,0,1, > 0,1,0,1,0,0 ], > [ 0,1,1,0,1,0, > 0,0,1,1,1,1, > 1,0,0,1,0,1, > 0,0,0,1,0,0, > 0,0,0,0,1,0, > 0,0,0,0,0,1 ] >; > T := RModule(F2, 6); > M := RModule(T, A); > Dimension(M); 6 > BaseRing(M); Finite field of size 2
We set R to be the name of the matrix ring associated with M. Using the generator subscript notation, we can access the matrices giving the (right) action of A.
> R := RightAction(M); > R.1; [1 0 0 1 0 1] [0 1 0 0 1 1] [0 1 1 1 1 0] [0 0 0 1 1 0] [0 0 0 1 0 1] [0 1 0 1 0 0] > R.2; [0 1 1 0 1 0] [0 0 1 1 1 1] [1 0 0 1 0 1] [0 0 0 1 0 0] [0 0 0 0 1 0] [0 0 0 0 0 1]
We display full details of the module.
> M: Maximal; Module M of dimension 6 with base ring GF(2) Generators of acting algebra: [1 0 0 1 0 1] [0 1 0 0 1 1] [0 1 1 1 1 0] [0 0 0 1 1 0] [0 0 0 1 0 1] [0 1 0 1 0 0] [0 1 1 0 1 0] [0 0 1 1 1 1] [1 0 0 1 0 1] [0 0 0 1 0 0] [0 0 0 0 1 0] [0 0 0 0 0 1]