Decides if algebra has an involution, i.e. a *-algebra.
Returns involution of given *-algebra.
> A := OctonionAlgebra(Rationals(),-1,-1,-1); > IsStarAlgebra(A); true > > s := Star(A); > A.1; // A.1 is the mult. id. (1 0 0 0 0 0 0 0) > A.1 @ s; (1 0 0 0 0 0 0 0) > > A.2; (0 1 0 0 0 0 0 0) > A.2 @ s; ( 0 -1 0 0 0 0 0 0)
The following operations are defined for nonassociative algebras for which x * (x * x)=(x * x) * x.
The generic minimum polynomial of an element in a power associative algebra.
The generic norm of an element in a power associative algebra.
The generic trace of an element in a power associative algebra.
Given a power associative algebra return a basis for the elements of generic trace 0.
> Q := QuaternionAlgebra(Rationals(), 1,1); > Trace(Q!1); 2 > GenericTrace(Q!1); 1 > Q := QuaternionAlgebra(GF(2), 1,1); > Trace(Q!1); 0 > GenericTrace(Q!1); 1The generic minimum polynomial of an element x in power associative algebra need only be a factor of the minimal polynomial of its right regular matrix yRx:=x * y.
> J := ExceptionalJordanCSA(GF(5)); > p := GenericMinimumPolynomial(J.3+J.12); > Rx := AsMatrices(Tensor(J), 2,0); // yR_x = y*x. > q := MinimalPolynomial(Rx[3]+Rx[12]); > Degree(p); 3 > Degree(q); 6 > q mod p; 0