- ff-diff
- ff-diff-element-operations
- ff-diff-space
- ff-elements-example
- ff-ff
- ff-places
- ff-places-sets
- ff_curves
- ff_curves-crypto_curve
- ff_curves-group_points
- ff_curves-point_counting
- ff_curves-points
- ff_curves-supersingular_curves
- ff_curves-zeta_functions
- ff_morphs
- FFT
- fi
- fi-subgroup-ops
- fi-subgroups-props
- Fiber
- Fibonacci
- Fibration
- Fibre
- Fibres
- fibs
- Field
- FixedField(A, U) : FldAb, GrpAb -> FldAb
- AbelianSubfield(A, U) : FldAb, GrpAb -> FldAb
- AbsoluteField(F) : FldAlg -> FldAlg
- AbsoluteField(F) : FldNum -> FldNum
- AbsoluteFunctionField(F) : FldFunG -> FldFunG
- AbsoluteModuleOverMinimalField(M) : ModGrp -> ModGrp
- AbsoluteModuleOverMinimalField(M) : ModGrp -> ModGrp
- AbsoluteModuleOverMinimalField(M, F) : ModGrp, FldFin -> ModGrp
- AbsoluteModulesOverMinimalField(Q, F) : [ ModGrp ], FldFin -> [ ModGrp ]
- AlgorithmicFunctionField(F) : FldFunFracSch -> FldFun, Map
- Alphabet(C) : Code -> Rng
- Alphabet(C) : Code -> Rng
- BaseField(A) : AlgQuat -> Fld
- BaseField(D) : DB -> FldFin
- BaseField(A) : FldAC -> Fld
- BaseField(A) : FldFunAb -> FldFunG
- BaseField(Q) : FldRat -> FldRat
- BaseField(F) : FldXPad -> FldXPad
- BaseField(A) : GalRep -> FldPad
- BaseField(A) : JacHyp -> Fld
- BaseField(J) : JacHyp -> Fld
- BaseField(M) : ModFrmBianchi -> FldNum
- BaseField(M) : ModFrmHil ->
- BaseField(f) : ModFrmHilElt -> Fld
- BaseField(R) : RngDiff -> Rng
- BaseField(R) : RootSys -> Fld
- BaseField(C) : Sch -> Fld
- BaseField(X) : Sch -> Fld
- BaseField(K) : SrfKum -> Fld
- BaseRing(F) : FldFun -> Rng
- BaseRing(FF) : FldFunOrd -> Rng
- BaseRing(L) : RngPad -> RngPad
- BaseRing(W) : RngWitt -> Fld
- BaseRing(C) : Sch -> Rng
- BaseRing(T) : TenSpc -> Rng
- BaseRing(T) : TenSpcElt -> Rng
- BasisOfRationalFunctionField(X) : TorVar -> SeqEnum
- ChangeField(A,K) : ArtRep, FldNum -> ArtRep, BoolElt
- CharacterField(x) : AlgChtrElt -> Rng
- ClassField(m, G) : Map, GrpAb -> FldAb
- CoefficientField(x) : AlgChtrElt -> Rng
- CoefficientField(C) : Code -> Rng
- CoefficientField(V) : ModTupFld -> Fld
- CoefficientRing(A) : AlgGen -> Rng
- CoefficientRing(A) : FldAb -> Fld
- CoefficientRing(M) : ModTupRng -> Rng
- CoefficientRing(R) : RngInvar -> Grp
- ComplexField() : -> FldCom
- ComplexField(R) : FldRe -> FldCom
- ComplexField(p) : RngIntElt -> FldCom
- ConstantField(F) : FldFunG -> Rng
- ConstantField(R) : RngDiff -> Rng
- ConstantFieldExtension(F, E) : FldFun, Rng -> FldFun, Map
- ConstantFieldExtension(F, C) : RngDiff, Fld -> RngDiff, Map
- ConstantFieldExtension(R, C) : RngDiffOp,Fld -> RngDiffOp, Map
- CyclotomicField(m) : RngIntElt -> FldCyc
- CyclotomicRelativeField(k, K) : FldCyc, FldCyc -> FldNum
- DecompositionField(p, A) : PlcNumElt, FldAb -> FldAb
- DecompositionField(p) : RngOrdIdl -> FldNum, Map
- DecompositionField(p, A) : RngOrdIdl, FldAb -> FldAb
- DegreeOfCharacterField(x) : AlgChtrElt -> RngIntElt
- DegreeOfExactConstantField(m) : DivFunElt -> RngIntElt
- DegreeOfExactConstantField(m, U) : DivFunElt, GrpAb -> RngIntElt
- DegreeOfExactConstantField(A) : FldFunAb -> RngIntElt
- DegreeOfFieldExtension(G) : GrpMat -> RngIntElt
- DifferentialFieldExtension(L) : RngDiffOpElt -> RngDiff
- DimensionOfExactConstantField(F) : FldFunG -> RngIntElt
- DimensionOfFieldOfGeometricIrreducibility(C): Crv -> RngIntElt
- ExactConstantField(F) : FldFunG -> Rng, Map
- ExactConstantField(F) : RngDiff -> RngDiff, Map
- ExponentialFieldExtension(F, f) : RngDiff, RngDiffElt -> RngDiff
- ExtendField(C, L) : Code, FldFin -> Code, Map
- ExtendField(G, L) : GrpMat, FldFin -> GrpMat, Map
- ExtendField(V, L) : ModTupFld, Fld -> ModTupFld, MapHom
- ExtensionField<F, x | P> : FldFin, ... -> FldFin, Map
- FactorizationOverSplittingField(f) : RngUPolElt[FldFin] -> [<RngUPolElt, RngIntElt>], FldFin
- Field(A) : ArtRep -> FldNum
- Field(K) : DBAtlasKeyMatRep -> FldFin
- Field(A) : GalRep -> FldPad
- Field(H) : HilbSpc -> FldCom
- Field(J) : JacketMot -> FldNum
- Field(P) : Plane -> FldFin
- FieldAutomorphism(G, sigma) : GrpLie, Map -> Map
- FieldMorphism(f) : Map -> Map
- FieldOfDefinition(H) : HomModAbVar -> ModAbVar
- FieldOfDefinition(phi) : MapModAbVar -> ModAbVar
- FieldOfDefinition(A) : ModAbVar -> Fld
- FieldOfDefinition(x) : ModAbVarElt -> ModTupFldElt
- FieldOfDefinition(G) : ModAbVarSubGrp -> Fld
- FieldOfFractions(Q) : FldRat -> FldRat
- FieldOfFractions(L) : FldXPad -> FldXPad
- FieldOfFractions(R) : RngDiff -> RngDiff, Map
- FieldOfFractions(O) : RngFunOrd -> FldFunOrd
- FieldOfFractions(Z) : RngInt -> FldRat
- FieldOfFractions(O) : RngOrd -> FldOrd
- FieldOfFractions(R) : RngPad -> FldPad
- FieldOfFractions(R) : RngSer -> RngSerLaur
- FieldOfFractions(E) : RngSerExt -> RngSerExt
- FieldOfFractions(P) : RngUPol -> FldFunRat
- FieldOfFractions(V) : RngVal -> Rng
- FieldOfGeometricIrreducibility(C) : Crv -> Rng, Map
- FiniteField(q) : RngIntElt -> FldFin
- FiniteField(p, n) : RngIntElt, RngIntElt -> FldFin
- FixedField(K, U) : FldAlg, GrpPerm -> FldNum, Map
- FixedField(K, S) : FldAlg, [Map] -> FldAlg, Map
- FixedField(L, G) : RngLocA, GrpPerm -> RngLocA
- FixedField(V) : SSGalRep -> RngSerLaur
- FunctionField(A) : Aff -> FldFunFracSch
- FunctionField(C) : Crv -> FldFunFracSch
- FunctionField(X) : CrvMod -> FldFun
- FunctionField(D) : DiffFun -> FldFun
- FunctionField(d) : DiffFunElt -> FldFun
- FunctionField(G) : DivFun -> FldFun
- FunctionField(D) : DivFunElt -> FldFun
- FunctionField(A) : FldFunAb -> FldFun
- FunctionField(F) : FldInvar -> FldFunRat
- FunctionField(f : parameters) : RngMPolElt -> FldFun
- FunctionField(S) : PlcFun -> FldFun
- FunctionField(P) : PlcFunElt -> FldFun
- FunctionField(X) : RieSrf -> FldFun
- FunctionField(R) : Rng -> FldFunG
- FunctionField(R) : Rng -> FldFunRat
- FunctionField(R, r) : Rng, RngIntElt -> FldFunRat
- FunctionField(O) : RngFunOrd -> FldFun
- FunctionField(e) : RngWittElt -> FldFun, Map
- FunctionField(A) : Sch -> FldFunFracSch
- FunctionField(C) : Sch -> FldFunG
- FunctionField(S) : [RngUPolElt] -> FldFun
- FunctionFieldDatabase(q, d) : RngIntElt, RngIntElt -> DB
- FunctionFieldPlace(p) : PlcCrvElt -> PlcFunElt
- GHomOverCentralizingField(M, N) : ModGrp, ModGrp -> ModMatGrp
- GaloisSplittingField(f) : RngUPolElt -> FldFun, [FldFunElt], GrpPerm, [[FldFunElt]]
- GaloisSplittingField(f) : RngUPolElt -> FldNum, [FldNumElt], GrpPerm, [[FldNumElt]]
- GenusField(A): FldAb -> FldAb
- GetDefaultRealField() : -> FldRe
- GroundField(F) : FldAlg -> Fld
- GroundField(F) : FldFin -> FldFin
- GroundField(F) : FldNum -> Fld
- HeckeEigenvalueField(M) : ModFrmHil -> Fld
- HeckeEigenvalueField(M) : ModSym -> Fld, Map
- HermitianFunctionField(p, d) : RngIntElt, RngIntElt -> FldFun
- HilbertClassField(K) : FldAlg -> FldAb
- HilbertClassField(K, p) : FldFun, PlcFunElt -> FldFunAb
- ISABaseField(F,G) : Fld, Fld -> BoolElt
- IdentityFieldMorphism(F) : Fld -> Map
- InertiaField(p) : RngOrdIdl -> FldNum, Map
- InvariantField(G, K) : GrpPerm, Fld -> FldInvar
- IsAbsoluteField(K) : FldAlg -> BoolElt
- IsAbsoluteField(K) : FldNum -> BoolElt
- IsAlgebraicDifferentialField(R) : Rng -> BoolElt
- IsAlgebraicField(R) : Any -> BoolElt
- IsDifferentialField(R) : Rng -> BoolElt
- IsField(H) : HomModAbVar -> BoolElt, Fld, Map, Map
- IsField(R) : Rng -> BoolElt
- IsField(R) : RngDiff -> BoolElt
- IsNumberField(R) : . -> BoolElt
- IsOverSmallerField(G : parameters) : GrpMat -> BoolElt, GrpMat
- IsOverSmallerField(G, k : parameters) : GrpMat -> BoolElt, GrpMat
- IsPrimeField(F) : Fld -> BoolElt
- IsRationalFunctionField(F) : FldFunG -> BoolElt
- IsRealisableOverSmallerField(M) : ModGrp -> BoolElt, ModGrp
- IsSplittingField(K, A) : Fld, AlgQuat -> BoolElt, AlgQuatElt, Map
- IsolGroupOfDegreeFieldSatisfying(d, p, f) : RngIntElt, RngIntElt, Any -> GrpMat
- IsolGroupsOfDegreeFieldSatisfying(d, p, f) : RngIntElt, RngIntElt, Any -> SeqEnum
- IsolNumberOfDegreeField(n, p) : RngIntElt, RngIntElt -> RngIntElt
- IsolProcessOfDegreeField(d, p) : ., . -> Process
- IsolProcessOfField(p) : . -> Process
- LocalField(L, f) : FldPad, RngUPolElt -> RngLocA
- LogarithmicFieldExtension(F, f) : RngDiff, RngDiffElt -> RngDiff
- MatRepFieldSizes(A) : GrpAtlas -> SetEnum[RngIntElt]
- MinimalField(a) : FldRatElt -> FldRat
- MinimalField(q) : FldRatElt -> FldRat
- MinimalField(G) : GrpMat -> FldFin
- MinimalField(M) : ModRng -> FldFin
- MinimalField(S) : SetEnum -> FldRat
- MinimalField(S) : [ FldCycElt ] -> FldCyc
- ModuleOverSmallerField(M, F) : ModGrp, FldFin -> ModGrp
- ModulesOverCommonField(M, N) : ModGrp, ModGrp -> ModGrp, ModGrp
- ModulesOverSmallerField(Q, F) : SeqEnum, FldFin -> ModGrp
- NumberField(A) : FldAb -> FldNum
- NumberField(F) : FldOrd -> FldNum
- NumberField(P) : PlcNum -> FldNum
- NumberField(P) : PlcNum -> FldNum
- NumberField(P) : PlcNumElt -> FldNum
- NumberField(P) : PlcNumElt -> FldNum
- NumberField(O) : RngOrd -> FldNum
- NumberField(O) : RngQuad -> FldQuad
- NumberField(f) : RngUPolElt -> FldNum
- NumberField(f) : RngUPolElt -> FldNum
- NumberField(e) : SubFldLatElt -> FldNum
- NumberField(s) : [ RngUPolElt ] -> FldNum
- NumberField(s) : [ RngUPolElt ] -> FldNum
- NumberFieldDatabase(d) : RngIntElt -> DB
- NumberFieldLattice(K, d) : FldNum, RngIntElt -> LatNF
- NumberFieldLattice(D) : ModDed -> LatNF
- NumberFieldLattice(S) : [ModTupFldElt] -> LatNF
- NumberFieldLatticeWithGram(F) : Mtrx -> LatNF
- NumberFieldSieve(n, F, m1, m2) : RngIntElt, RngMPolElt, RngIntElt, RngIntElt -> RngIntElt
- NumberOfPlacesOfDegreeOneECFBound(C) : Crv -> RngIntElt
- NumberOfPlacesOfDegreeOneECFBound(F) : FldFunG -> RngIntElt
- NumberOfPlacesOfDegreeOneOverExactConstantField(C) : Crv[FldFin] -> RngIntElt
- NumberOfPlacesOfDegreeOneOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
- NumberOfPlacesOfDegreeOneOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
- NumberOfPlacesOfDegreeOneOverExactConstantField(F) : FldFunG -> RngIntElt
- NumberOfPlacesOfDegreeOneOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
- NumberOfPlacesOfDegreeOneOverExactConstantFieldBound(F, m) : FldFun, RngIntElt -> RngIntElt
- NumberOfPlacesOfDegreeOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
- NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
- NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
- PointsOverSplittingField(Z) : Clstr -> SetEnum
- PrimeField(F) : Fld -> Fld
- PrimeField(F) : FldFin -> FldFin
- PrimeField(N) : Nfd -> FldFin
- PrimeRing(F) : FldFun -> Rng
- PrimeRing(L) : RngPad -> RngPad
- QuadraticField(m) : RngIntElt -> FldQuad
- RamificationField(p) : RngOrdIdl -> FldNum, Map
- RamificationField(p, i) : RngOrdIdl, RngIntElt -> FldNum, Map
- RationalDifferentialField(C) : Fld -> RngDiff
- Rationals() : -> FldRat
- RationalsAsNumberField() : -> FldNum
- RationalsAsNumberField() : -> FldNum
- RayClassField(D) : DivNumElt -> FldAb
- RayClassField(m) : Map -> FldAb
- RealField() : -> FldRe
- RealField(p) : RngIntElt -> FldRe
- RelativeField(F, L) : FldAlg, FldAlg -> FldAlg
- RelativeField(F, L) : FldNum, FldNum -> FldNum
- RelativeField(L, m) : RngLocA, Map -> RngLocA, Map, Map
- ResidueClassField(L) : FldXPad -> FldFin, Map
- ResidueClassField(P) : PlcCrvElt -> Rng
- ResidueClassField(P) : PlcFunElt -> Rng, Map
- ResidueClassField(P) : PlcNumElt -> Fld
- ResidueClassField(P) : PlcNumElt -> Fld
- ResidueClassField(I) : Rng -> Fld, Map
- ResidueClassField(I) : RngFunOrdIdl -> Rng, Map
- ResidueClassField(p) : RngIntElt -> FldFin, Map
- ResidueClassField(L) : RngLocA -> Rng, Map
- ResidueClassField(O, I) : RngOrd, RngOrdIdl -> FldFin, Map
- ResidueClassField(L) : RngPad -> FldFin, Map
- ResidueClassField(R) : RngSer -> Rng, Map
- ResidueClassField(E) : RngSerExt -> FldFin
- ResidueField(I) : OMIdl -> Fld
- ResidueField(I) : OMIdl -> Fld
- ResidueField(R) : RngGal -> FldFin
- RestrictField(G, S) : GrpMat, FldFin -> GrpMat, Map
- RestrictField(V, L) : ModTupFld, Fld -> ModTupFld, MapHom
- RingOfFractions(Q) : RngMPolRes -> RngFunFrac
- RootsInSplittingField(f) : RngUPolElt[FldFin] -> [<RngUPolElt, RngIntElt>], FldFin
- SetDefaultRealField(R) : FldRe ->
- SmallerField(G) : GrpMat -> FLdFin
- SmallerFieldBasis(G) : GrpMat -> GrpMatElt
- SmallerFieldImage(G, g) : GrpMat, GrpMatElt -> GrpMatElt
- SplittingField(F) : FldAlg -> FldAlg, SeqEnum
- SplittingField(F) : FldNum -> FldNum, SeqEnum
- SplittingField(f) : RngUPolElt -> FldAlg
- SplittingField(f) : RngUPolElt -> FldNum
- SplittingField(S) : RngUPolElt[FldFin] -> FldFin
- SplittingField(P) : RngUPolElt[FldFin] -> FldFin
- SplittingField(f) : RngUPolElt[FldPad] -> FldPad, SeqEnum
- SplittingField(f, R) : RngUPolElt[RngInt], RngPad -> RngPad
- SplittingField(L) : [RngUPolElt] -> FldNum, [FldNumElt]
- SplittingField(L) : [RngUPolElt] -> FldNum, [FldNumElt]
- SubfieldSubcode(C, S) : Code, FldFin -> Code, Map
- UnderlyingField(R) : RngDiff -> Rng
- UnderlyingRing(F) : FldFunG -> FldFunG
- WeilPolynomialOverFieldExtension(f, deg) : RngUPolElt, RngIntElt -> RngUPolElt
- WriteOverLargerField(G) : GrpMat -> GrpMat, GrpAb, SeqEnum
- WriteOverSmallerField(G, F) : GrpMat, FldFin -> GrpMat, Map
- WriteOverSmallerField(M, F) : ModGrp, FldFin -> ModGrp, Map
- ext< K | f > : FldFunRat, RngUPolElt -> FldFun
- pAdicField(p : parameters) : RngIntElt -> FldXPad
- pAdicRing(p) : RngIntElt -> RngPad
- pAdicRing(p, k) : RngIntElt, RngIntElt -> RngPad
V2.28, 13 July 2023