Given an ideal I in OM representation and a prime element p in the field containing I, compute a p-integral basis for I.
Given an ideal I in either representation and a sequence S of primes in the field containing I, compute an S-integral basis of I for the given set of primes S.
HNF: BoolElt Default: false
Separated: BoolElt Default: false
Given an ideal I in OM representation, return a basis for I.If HNF is set to true a triangular basis in Hermite form is returned.
If Separated is set to true the basis will be returned as a sequence of numerators and denominators.
> Ax<x> := PolynomialRing(Integers()); > f := x^4 + 12*x^3 + 54*x^2 + 108*x + 89; > L := NumberField(f); > p := 2; > I := OMRepresentation(L,[L.1,p^12]); > pIntegralBasis(I,p); [ 1, L.1 + 1, 1/2*(L.1^2 + 2*L.1 + 1), 1/4*(L.1^3 + 3*L.1^2 + 3*L.1 + 1) ] > pIntegralBasis(I,p:HNF:=true); // In HNF [ 1, L.1, 1/2*(L.1^2 + 1), 1/4*(L.1^3 + L.1^2 + 3*L.1 + 3) ] > Basis(I); [ 1, L.1 + 1, 1/2*(L.1^2 + 2*L.1 + 1), 1/4*(L.1^3 + 3*L.1^2 + 3*L.1 + 1) ] > Basis(I : HNF := true); [ 1, L.1, 1/2*(L.1^2 + 1), 1/4*(L.1^3 + L.1^2 + 3*L.1 + 3) ]
Given an ideal I in OM representation, return a, b such that e = a * e1 + b * e2 for some e1, e2 for all e ∈I.
Given an ideal I in OM representation, compute the norm of I.
RED: BoolElt Default: false,
MoreSFL: BoolElt Default: false
Compute the P-valuation v of α at the prime ideal P.Setting the parameter MoreSFL to true selects a single factor lifting algorithm. Setting the parameter RED to true returns also the class of α in Pv/P(v + 1).
Given ideals I and P in OM representation, return the valuation of I at P.
Given an element a of the field containing the prime ideal P, which is in OM representation, return a' such that a = a' + I and a' ∈P0/P.If m > 0 is given then a sequence of length m of elements in P0/P is returned representing the local expansion of a at P up to precision m.
Given an ideal I in OM representation returns a sequence of tuples of primes Pi and exponents ei such that I = ∏i Piei.
> Ax<x> := PolynomialRing(Integers()); > f := x^5 + 343*x^4 + 49*x^3 + 343*x^2 + 7*x + 6; > L := NumberField(f); > I := OMRepresentation(L,[1/L.1^2,12]); > I; OM ideal of the field Number Field with defining polynomial x^5 + 343*x^4 + 49*x^3 + 343*x^2 + 7*x + 6 over the Rational Field generated by [ 1/36*(7*$.1^4 + 2395*$.1^3 - 1715*$.1^2 + 2107*$.1 - 2009), 12 ] > TwoElement(I); 1 1/36*(91*L.1^4 + 211*L.1^3 + 169*L.1^2 + 175*L.1 + 55) > Norm(I); 1/36 > Factorization(I); [ <OM prime ideal over 2 of Number Field with defining polynomial x^5 + 343*x^4 + 49*x^3 + 343*x^2 + 7*x + 6 over the Rational Field having residual degree 1 and ramification index 1 Last phi polynomial is x, -2>, <OM prime ideal over 3 of Number Field with defining polynomial x^5 + 343*x^4 + 49*x^3 + 343*x^2 + 7*x + 6 over the Rational Field having residual degree 1 and ramification index 1 Last phi polynomial is x, -2> ] > Valuation(I, L`PrimeIdeals[2][1]); -2 > Valuation(I, L`PrimeIdeals[3][1]); -2
Given an ideal I in OM representation returns the field P0/P.
> Ax<x> := PolynomialRing(Integers()); > f := x^5 + 343*x^4 + 49*x^3 + 343*x^2 + 7*x + 6; > L := NumberField(f); > p := 7; > Montes(L,p); > L`PrimeIdeals[p]; [ OM prime ideal over 7 of Number Field with defining polynomial x^5 + 343*x^4 + 49*x^3 + 343*x^2 + 7*x + 6 over the Rational Field having residual degree 1 and ramification index 1 Last phi polynomial is x + 6, OM prime ideal over 7 of Number Field with defining polynomial x^5 + 343*x^4 + 49*x^3 + 343*x^2 + 7*x + 6 over the Rational Field having residual degree 4 and ramification index 1 Last phi polynomial is x^4 + x^3 + x^2 + x + 1 ] > ResidueField($1[2]); Finite field of size 7^4