Given an ideal I in OM representation and a prime element p in the field containing I, compute a p-integral basis for I.
Given an ideal I in either representation and a sequence S of primes in the field containing I, compute an S-integral basis of I for the given set of primes S.
HNF: BoolElt Default: false
Separated: BoolElt Default: false
Given an ideal I in OM representation, return a basis for I.If HNF is set to true a triangular basis in Hermite form is returned.
If Separated is set to true the basis will be returned as a sequence of numerators and denominators.
> k := GF(13); > A<t> := PolynomialRing(k); > Ax<x> := PolynomialRing(A); > f := x^4 + (4*t + 4)*x^3 + (6*t^2 + 12*t + 6)*x^2 + (4*t^3 + 12*t^2 + 12*t > + 4)*x + t^4 + 5*t^3 + 6*t^2 + 4*t + 1; > L := FunctionField(f); > p := t; > I := OMRepresentation(L,[L.1,p^12]); > pIntegralBasis(I,p); [ 1, L.1 + 1, 1/t*L.1^2 + 2/t*L.1 + 1/t, 1/t^2*L.1^3 + 3/t^2*L.1^2 + 3/t^2*L.1 + 1/t^2 ] > pIntegralBasis(I,p:HNF:=true); // In HNF [ 1, L.1, 1/t*L.1^2 + 2/t*L.1 + 1/t, 1/t^2*L.1^3 + 3/t^2*L.1^2 + 3/t^2*L.1 + 1/t^2 ]The p-integral basis is already the global basis :
> Basis(I); [ 1, L.1 + 1, 1/t*L.1^2 + 2/t*L.1 + 1/t, 1/t^2*L.1^3 + 3/t^2*L.1^2 + 3/t^2*L.1 + 1/t^2 ] > Basis(I : HNF := true); [ 1, L.1, 1/t*L.1^2 + 2/t*L.1 + 1/t, 1/t^2*L.1^3 + 3/t^2*L.1^2 + 3/t^2*L.1 + 1/t^2 ]
Given an ideal I in OM representation, return a, b such that e = a * e1 + b * e2 for some e1, e2 for all e ∈I.
Given an ideal I in OM representation, compute the norm of I.
RED: BoolElt Default: false,
MoreSFL: BoolElt Default: false
Compute the P-valuation v of α at the prime ideal P.Setting the parameter MoreSFL to true selects a single factor lifting algorithm. Setting the parameter RED to true returns also the class of α in Pv/P(v + 1).
Given ideals I and P in OM representation, return the valuation of I at P.
Given an element a of the field containing the prime ideal P, which is in OM representation, return a' such that a = a' + I and a' ∈P0/P.If m > 0 is given then a sequence of length m of elements in P0/P is returned representing the local expansion of a at P up to precision m.
Given an ideal I in OM representation returns a sequence of tuples of primes Pi and exponents ei such that I = ∏i Piei.
> k := GF(13); > A<t> := PolynomialRing(k); > Ax<x> := PolynomialRing(A); > f := x^5 + (t^2 + 2*t + 1)*x^4 + (t^4 + 4*t^3 + 6*t^2 + 4*t + 1)*x^3 + (t^3 > + 3*t^2 + 3*t + 1)*x^2 + (t^4 + 4*t^3 + 6*t^2 + 4*t + 1)*x + t; > L := FunctionField(f); > I := OMRepresentation(L,[1/L.1^2,12]); > I; OM ideal of the field Algebraic function field defined over Univariate rational function field over GF(13) by x^5 + (t^2 + 2*t + 1)*x^4 + (t^4 + 4*t^3 + 6*t^2 + 4*t + 1)*x^3 + (t^3 + 3*t^2 + 3*t + 1)*x^2 + (t^4 + 4*t^3 + 6*t^2 + 4*t + 1)*x + t generated by [ (t^4 + 4*t^3 + 6*t^2 + 4*t + 1)/t^2*$.1^4 + (t^6 + 6*t^5 + 2*t^4 + 7*t^3 + 2*t^2 + 5*t + 1)/t^2*$.1^3 + (t^8 + 8*t^7 + 2*t^6 + 4*t^5 + 5*t^4 + 3*t^3 + 7*t + 1)/t^2*$.1^2 + (t^7 + 7*t^6 + 7*t^5 + 5*t^4 + 3*t^3 + 4*t^2 + 6*t + 1)/t^2*$.1 + (t^8 + 8*t^7 + 2*t^6 + 4*t^5 + 4*t^4 + t^3 + 12*t^2 + 7*t + 1)/t^2, 12 ] > TwoElement(I); 1 (9*t^9 + t^7 + 3*t^6 + 11*t^4 + 2*t^3 + 9*t^2 + 4*t + 1)/t^2*L.1^4 + (4*t^12 + 8*t^11 + 5*t^10 + 9*t^9 + 2*t^8 + 10*t^7 + 12*t^6 + 6*t^5 + 5*t^4 + 12*t^3 + 4*t^2 + 5*t + 1)/t^2*L.1^3 + (4*t^11 + 10*t^9 + 11*t^8 + 6*t^7 + 7*t^6 + 10*t^5 + 5*t^4 + 10*t^3 + 3*t^2 + 7*t + 1)/t^2*L.1^2 + (4*t^12 + 8*t^11 + 5*t^10 + 2*t^8 + 3*t^7 + 5*t^6 + 8*t^5 + 10*t^4 + 6*t^3 + 7*t^2 + 6*t + 1)/t^2*L.1 + (4*t^9 + 5*t^8 + 5*t^6 + 11*t^5 + 5*t^4 + 10*t^3 + 3*t^2 + 7*t + 1)/t^2 > Norm(I); 1/t^2 > Factorization(I); [ <OM prime ideal over t of Algebraic function field defined over Univariate rational function field over GF(13) by x^5 + (t^2 + 2*t + 1)*x^4 + (t^4 + 4*t^3 + 6*t^2 + 4*t + 1)*x^3 + (t^3 + 3*t^2 + 3*t + 1)*x^2 + (t^4 + 4*t^3 + 6*t^2 + 4*t + 1)*x + t having residual degree 1 and ramification index 1 Last phi polynomial is x, -2> ] > Montes(L, t+1); > Valuation(I, L`PrimeIdeals[t][1]); -2 > Valuation(I, L`PrimeIdeals[t+1][1]); 0
Given an ideal I in OM representation returns the field P0/P.
Given a prime ideal I in OM representation, contained in a function field, return the degree of the residue field over the constant field of the function field.If I is not prime then the degree of the first ideal in the factorization of I is returned.
> F<t> := FunctionField(Rationals()); > P<x> := PolynomialRing(F); > L<a> := ext<F | x^2 + t>; > Montes(L, Numerator(t)^2+1); > L`PrimeIdeals[Numerator(t)^2+1]; [ OM prime ideal over t^2 + 1 of Algebraic function field defined over Univariate rational function field over Rational Field by x^2 + t having residual degree 2 and ramification index 1 Last phi polynomial is x^2 + t ] > Degree($1[1]); 4 > ResidueField($2[1]); Number Field with defining polynomial y^2 + $.1 over its ground field