- orbit
- orbit-action
- OrbitAction
- OrbitActionBounded
- OrbitActions
- Orbital
- OrbitalGraph
- OrbitBounded
- OrbitClosure
- OrbitClosure(G, M, S) : Grp, Any, Any -> Any
- OrbitClosure(G, S) : GrpMat, { Elt } -> GSet
- OrbitClosure(G, Y, S) : GrpPerm, GSet, { Elt } -> GSet
- OrbitImage
- OrbitImageBounded
- OrbitKernel
- OrbitKernelBounded
- OrbitRepresentatives
- Orbits
- BasicOrbits(G) : GrpPerm -> [SetIndx]
- DistinguishedOrbitsOnSimples(R) : RootDtm -> SeqEnum[GSetEnum]
- GammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
- GammaOrbitsRepresentatives(R, delta) : RootDtm, RngIntElt -> SeqEnum
- LineOrbits(G) : GrpMat -> [ SetIndx ]
- NilpotentOrbits( L ) : AlgLie -> SeqEnum
- Orbits(G) : GrpMat -> [ SetIndx ]
- Orbits(A, Y) : GrpPerm, GSet -> [ GSet ]
- Orbits(G, Y) : GrpPerm, GSet -> [ GSet ]
- Orbits(G, Y) : GrpPerm, GSet -> [ GSet ]
- Orbits(G, Y) : GrpPerm, GSet -> [ GSet ]
- OrbitsOfSpaces(G, k) : GrpMat, RngIntElt -> SeqEnum
- OrbitsOnSimples(R) : RootDtm -> SeqEnum[GSetEnum]
- OrbitsPartition(G) : GrphUnd -> [ { GrphVert } ]
- ReducedOrbits(Q) : QuadBin -> [ {@ QuadBinElt @} ]
- GrpMatGen_Orbits (Example H65E24)
- orbits
- OrbitsOfSpaces
- OrbitsOnSimples
- OrbitsPartition
- ord
- ord-chars
- ord-ops
- ord_creat_cyc
- Order
- Order(J) : JacHyp -> RngIntElt
- # J : JacHyp -> RngIntElt
- # G: SchGrpEll -> RngIntElt
- # H : SetPtEll -> RngIntElt
- AbsoluteOrder(O) : RngFunOrd -> RngFunOrd
- AbsoluteOrder(O) : RngOrd -> RngOrd
- AdditiveOrder(G) : GrpLie -> SeqEnum
- AdditiveOrder(W) : GrpPermCox -> SeqEnum
- AdditiveOrder(R) : RootStr -> SeqEnum
- AdditiveOrder(R) : RootSys -> SeqEnum
- ApproximateOrder(x) : ModAbVarElt -> RngIntElt
- CentralOrder(g : parameters) : GrpMatElt -> RngIntElt, BoolElt
- ChangeOrder(I, order) : RngMPol, ..., -> RngMPol, Map
- ChangeOrder(I, Q) : RngMPol, RngMPol -> RngMPol, Map
- ChangeOrder(I, T) : RngMPol, Tup -> RngMPol
- ChangeOrder(I, order) : RngMPolLoc, ..., -> RngMPolLoc, Map
- ChangeOrder(I, Q) : RngMPolLoc, RngMPolLoc -> RngMPolLoc, Map
- ChevalleyOrderPolynomial(type, n: parameters) : MonStgElt, RngIntElt -> RngUPolElt
- ClassicalCentraliserOrder(G,g) : GrpMat, GrpMatElt -> RngIntEltFact
- ComponentGroupOrder(A, p) : ModAbVar, RngIntElt -> RngIntElt
- ComponentGroupOrder(M, p) : ModSym, RngIntElt -> RngIntElt
- CompositionTreeOrder(G) : Grp -> RngIntElt
- CompositionTreeOrder(G) : Grp -> RngIntElt
- CoxeterGroupOrder(C) : AlgMatElt -> .
- CoxeterGroupOrder(M) : AlgMatElt -> RngIntElt
- CoxeterGroupOrder(D) : GrphDir -> .
- CoxeterGroupOrder(G) : GrphUnd -> .
- CoxeterGroupOrder(N) : MonStgElt -> .
- CoxeterGroupOrder(R) : RootStr -> RngIntElt
- CoxeterGroupOrder(R) : RootSys -> RngIntElt
- CyclotomicOrder(K) : FldCyc -> RngIntElt
- ECMOrder(p, s) : RngIntElt, RngIntElt -> RngIntElt
- EquationOrder(A) : FldAb -> RngOrd
- EquationOrder(K) : FldNum -> RngOrd
- EquationOrder(F) : FldQuad -> RngQuad
- EquationOrder(O) : RngFunOrd -> RngFunOrd
- EquationOrder(O) : RngOrd -> RngOrd
- EquationOrder(f) : RngUPolElt -> RngOrd
- EquationOrder(S) : [RngUPolElt] -> RngOrd
- EquationOrderFinite(F) : FldFun -> RngFunOrd
- EquationOrderInfinite(F) : FldFun -> RngFunOrd
- FactoredChevalleyGroupOrder(type, n, F: parameters) : MonStgElt, RngIntElt, FldFin -> RngIntEltFact
- FactoredOrder(A) : AlgMatElt -> [ <RngIntElt, RngIntElt> ]
- FactoredOrder(a) : AlgMatElt -> [ <RngIntElt, RngIntElt> ]
- FactoredOrder(a) : FldFinElt -> RngIntElt
- FactoredOrder(G) : GrpAb -> [<RngIntElt, RngIntElt>]
- FactoredOrder(A) : GrpAutCrv -> [ <RngIntElt, RngIntElt> ]
- FactoredOrder(A) : GrpAuto -> [ <RngIntElt, RngIntElt> ]
- FactoredOrder(G) : GrpFin -> [ <RngIntElt, RngIntElt> ]
- FactoredOrder(G) : GrpGPC -> [<RngIntElt, RngIntElt>]
- FactoredOrder(G) : GrpLie -> RngIntElt
- FactoredOrder(G) : GrpMat -> [ <RngIntElt, RngIntElt> ]
- FactoredOrder(g) : GrpMatElt -> [ <RngIntElt, RngIntElt> ], BoolElt
- FactoredOrder(G) : GrpPC -> [<RngIntElt, RngIntElt>]
- FactoredOrder(P) : GrpPCpQuotientProc -> [ <RngIntElt, RngIntElt> ]
- FactoredOrder(G) : GrpPerm -> [ <RngIntElt, RngIntElt> ]
- FactoredOrder(J) : JacHyp -> [ <RngIntElt, RngIntElt> ]
- FactoredOrder(P) : PtEll -> RngIntElt
- FactoredOrder(G) : SchGrpEll -> RngIntElt
- FactoredOrder(H) : SetPtEll -> RngIntElt
- FactoredProjectiveOrder(a) : AlgMatElt -> [ <RngIntElt, RngIntElt> ]
- FactoredProjectiveOrder(A) : AlgMatElt -> [ <RngIntElt, RngIntElt> ], RngElt
- FactoredProjectiveOrder(A) : AlgMatElt -> [ <RngIntElt, RngIntElt> ], RngElt
- GeneratorOrder(G) : GrpAtc -> SeqEnum
- GroupOfLieTypeFactoredOrder(R, q) : RootDtm, RngElt -> RngIntElt
- GroupOfLieTypeOrder(R, q) : RootDtm, RngElt -> RngIntElt
- HasFiniteOrder(g) : GrpMatElt -> BoolElt, RngIntElt
- HasFiniteOrder(A) : Mtrx -> BoolElt
- HasFiniteOrder (g : parameters ) : GrpMatElt -> BoolElt, RngIntElt
- HasGrevlexOrder(I) : RngMPol -> BoolElt
- HasOrder(P, n) : JacHypPt, RngIntElt -> BoolElt
- IsAbsoluteOrder(O) : RngFunOrd -> BoolElt
- IsAbsoluteOrder(O) : RngOrd -> BoolElt
- IsAdditiveOrder(R, Q) : RootStr, [RngIntElt] -> BoolElt
- IsAdditiveOrder(R, Q) : RootSys, [RngIntElt] -> BoolElt
- IsEquationOrder(O) : RngFunOrd -> BoolElt
- IsEquationOrder(O) : RngOrd -> BoolElt
- IsFiniteOrder(O) : RngFunOrd -> BoolElt
- IsOrder(P, m) : PtEll, RngIntElt -> BoolElt
- IsOrderTerm(s) : RngDiffElt -> BoolElt
- IsolOrder(n, p, i) : RngIntElt, RngIntElt, RngIntElt -> RngIntElt
- LMGFactoredOrder(G) : GrpMat[FldFin] -> SeqEnum
- LeftOrder(I) : AlgAssVOrdIdl -> AlgAssVOrd
- LeftOrder(I) : AlgQuatOrdIdl -> AlgQuatOrd
- MaximalOrder(O) : AlgAssVOrd[RngInt] -> AlgAssVOrd
- MaximalOrder(O) : AlgAssVOrd[RngUPol] -> AlgAssVOrd
- MaximalOrder(A) : AlgAssV[FldAlg] -> AlgAssVOrd
- MaximalOrder(A) : AlgAssV[FldRat] -> AlgAssVOrd
- MaximalOrder(O) : AlgQuatOrd -> AlgQuat
- MaximalOrder(A) : AlgQuat[FldRat] -> AlgQuatOrd
- MaximalOrder(A) : FldAb -> RngOrd
- MaximalOrder(F) : FldNum -> RngOrd
- MaximalOrder(F) : FldQuad -> RngQuad
- MaximalOrder(Q) : FldRat -> RngInt
- MaximalOrder(O) : RngFunOrd -> RngFunOrd
- MaximalOrder(O) : RngOrd -> RngOrd
- MaximalOrder(f) : RngUPolElt -> RngOrd
- MaximalOrderFinite(A) : AlgAssV[FldFunRat] -> AlgAssVOrd
- MaximalOrderFinite(A) : AlgAssV[FldFun] -> AlgAssVOrd
- MaximalOrderFinite(F) : FldFun -> RngFunOrd
- MaximalOrderFinite(A) : FldFunAb -> RngFunOrd
- MaximalOrderFinite(u) : RngWittElt -> RngFunOrd
- MaximalOrderInfinite(A) : AlgAssV[FldFunRat] -> AlgAssVOrd
- MaximalOrderInfinite(F) : FldFun -> RngFunOrd
- MonomialOrder(P) : RngMPol -> Tup
- MonomialOrder(R) : RngMPolLoc -> Tup
- MonomialOrderWeightVectors(P) : RngMPol -> [ [ FldRatElt ] ]
- MonomialOrderWeightVectors(R) : RngMPol -> [ [ FldRatElt ] ]
- MultiplicativeOrder(gamma) : AlgAssVOrdElt -> SeqEnum
- Order(O, N) : AlgAssVOrd, RngOrdIdl -> AlgAssVOrd
- Order(I) : AlgAssVOrdIdl -> AlgAssVOrd
- Order(A, m, I) : AlgAssV[FldOrd], AlgMatElt[FldOrd], SeqEnum[RngOrdFracIdl] -> AlgAssVOrd
- Order(A, pm) : AlgAssV[FldOrd], PMat -> AlgAssVOrd
- Order(x) : AlgChtrElt -> RngIntElt
- Order(A) : AlgMatElt -> RngIntElt
- Order(a) : AlgMatElt -> RngIntElt
- Order(O, N) : AlgQuatOrd, RngElt -> AlgQuatOrd
- Order(D) : Dsgn -> RngIntElt
- Order(a) : FldFinElt -> RngIntElt
- Order(FF) : FldFunOrd -> RngFunOrd
- Order(F) : FldOrd -> RngOrd
- Order(G) : GrpAb -> RngIntElt
- Order(x) : GrpAbElt -> RngIntElt
- Order(A) : GrpAtlas -> RngIntElt
- Order(A) : GrpAutCrv -> RngIntElt
- Order(f) : GrpAutCrvElt -> RngIntElt
- Order(A) : GrpAuto -> RngIntElt
- Order(f) : GrpAutoElt -> RngIntElt
- Order(u) : GrpBBElt -> RngIntElt
- Order(G) : GrpDrch -> RngIntElt
- Order(chi) : GrpDrchElt -> RngIntElt
- Order(chi) : GrpDrchNFElt -> RngIntElt
- Order(g) : GrpElt -> RngIntElt
- Order(G) : GrpFin -> RngIntElt
- Order(G) : GrpGPC -> RngIntElt
- Order(x) : GrpGPCElt -> RngIntElt
- Order(G) : Grph -> RngIntElt
- Order(G) : GrphMult -> RngIntElt
- Order(G) : GrpLie -> RngIntElt
- Order(G) : GrpMat -> RngIntElt
- Order(g) : GrpMatElt -> RngIntElt, BoolElt
- Order(G) : GrpMatUnip -> RngIntElt
- Order(G) : GrpPC -> RngIntElt
- Order(x) : GrpPCElt -> RngIntElt
- Order(P) : GrpPCpQuotientProc -> RngIntElt
- Order(G) : GrpPerm -> RngIntElt
- Order(g) : GrpPermElt -> RngIntElt
- Order(G) : GrpRWS -> RngIntElt
- Order(G) : GrpRWS -> RngIntElt
- Order(P) : JacHypPt -> RngIntElt
- Order(P, l, u, n, m) : JacHypPt, RngIntElt, RngIntElt ,RngIntElt, RngIntElt -> RngIntElt
- Order(P, l, u) : JacHypPt, RngIntElt, RngIntElt -> RngIntElt
- Order(x) : ModAbVarElt -> RngIntElt
- Order(G) : ModAbVarSubGrp -> RngIntElt
- Order(M) : MonRWS -> RngIntElt
- Order(x) : NfdElt -> RngIntElt
- Order(g: parameters) : GrpAbGenElt -> RngIntElt
- Order(g, l, u, n, m: parameters) : GrpAbGenElt, RngIntElt, RngIntElt ,RngIntElt, RngIntElt -> RngIntElt
- Order(g, l, u: parameters) : GrpAbGenElt, RngIntElt, RngIntElt -> RngIntElt
- Order(G: parameters) : GrpFP -> RngIntElt
- Order(G : parameters) : GrpMat -> RngIntElt
- Order(P) : Plane -> RngIntElt
- Order(pm) : PMat -> Rng
- Order(P) : PtEll -> RngIntElt
- Order(f) : QuadBinElt -> RngIntElt
- Order(R, S) : Rng, SeqEnum[AlgAssVElt] -> AlgAssVOrd
- Order(L) : RngDiffOpElt -> RngIntElt
- Order(O, T, d) : RngFunOrd, AlgMatElt, RngElt -> RngFunOrd
- Order(O, M) : RngFunOrd, ModDed -> RngFunOrd
- Order(O, S) : RngFunOrd, [FldFunElt] -> RngFunOrd
- Order(I) : RngFunOrdIdl -> RngFunOrd
- Order(a) : RngIntResElt -> RngIntElt
- Order(O, T, d) : RngOrd, AlgMatElt, RngIntElt -> RngOrd
- Order(O, M) : RngOrd, ModDed -> RngOrd
- Order(I) : RngOrdFracIdl -> RngOrd
- Order(s) : RngPowAlgElt -> RngIntElt
- Order(S) : SeqEnum[AlgAssVElt[FldAlg]] -> AlgAssVOrd
- Order(S, I) : SeqEnum[AlgAssVElt[FldAlg]], SeqEnum[RngOrdFracIdl] -> AlgAssVOrd
- Order(H, r) : SetPtEll, RngIntElt -> RngIntElt
- Order(e) : SubGrpLatElt -> RngIntElt
- Order( [ e1, ... en ] ): [FldAlgElt] -> RngOrd
- OrderAutomorphismGroupAbelianPGroup (A) : SeqEnum -> RngIntElt
- OrderOfRootOfUnity(r, n) : RngElt, RngIntElt -> RngIntElt
- OuterOrder(A) : GrpAuto -> RngIntElt
- PapiOrder(W,w) : GrpPermCox, GrpPermElt -> SeqEnum
- PermutationGroupExtendedPerfectCodeZ4Order(δ, m) : RngIntElt, RngIntElt -> RngIntElt
- PermutationGroupHadamardCodeZ4Order(δ, m) : RngIntElt, RngIntElt -> RngIntElt
- ProjectiveOrder(a) : AlgMatElt -> RngIntElt
- ProjectiveOrder(A) : AlgMatElt -> RngIntElt, RngElt
- ProjectiveOrder(g) : GrpMatElt -> RngIntElt, RngElt
- QuadraticOrder(Q) : QuadBin -> RngQuad
- QuaternionOrder(A, M) : AlgQuat[FldRat], RngIntElt -> AlgQuatOrd
- QuaternionOrder(G) : GrpPSL2 -> AlgQuatOrd
- QuaternionOrder(M) : ModFrmHil -> AlgAssVOrd
- QuaternionOrder(R, S) : Rng, [AlgQuatElt] -> AlgQuatOrd
- QuaternionOrder(N) : RngIntElt -> AlgQuatOrd
- QuaternionOrder(D1, D2, T) : RngIntElt, RngIntElt, RngIntElt -> AlgQuat
- QuaternionOrder(S) : [AlgQuatElt] -> AlgQuatOrd
- RandomElementOfOrder(G, n : parameters) : GrpMat, RngIntElt-> BoolElt, GrpMatElt, GrpSLPElt, BoolElt
- RightOrder(I) : AlgQuatOrdIdl -> AlgQuatOrd
- SMaximalOrder(u, S) : RngWittElt, [PlcFunElt] -> RngFunOrd
- SetOrderMaximal(O, b) : RngFunOrd, BoolElt ->
- SetOrderMaximal(O, b) : RngOrd, BoolElt ->
- SetOrderTorsionUnit(O, e, r) : RngOrd, RngOrdElt, RngIntElt ->
- SetOrderUnitsAreFundamental(O) : RngOrd ->
- SimpleGroupOfOrder(M) : RngIntElt -> Grp
- SubOrder(O) : RngFunOrd -> RngFunOrd
- SubOrder(O) : RngOrd -> RngOrd
- TameOrder(A) : AlgQuat[FldAlg] -> AlgAssVOrd
- TwistedTorusOrder(R, w) : RootDtm, GrpPermElt -> SeqEnum
- WeakOrder(L) : RngDiffOpElt -> RngIntElt
- pMaximalOrder(O, p) : AlgQuatOrd, RngElt -> AlgQuatOrd, RngIntElt
- pMaximalOrder(O, p) : RngFunOrd, RngFunOrdIdl -> RngFunOrd
- pMaximalOrder(O, p) : RngFunOrd, RngFunOrdIdl -> RngFunOrd
- pMaximalOrder(O, p) : RngOrd, RngIntElt -> RngOrd
- CrvEllFldFin_Order (Example H129E2)
- GB_Order (Example H112E1)
- GrpAtc_Order (Example H82E5)
- GrpMatGen_Order (Example H65E11)
- GrpMatGen_Order (Example H65E9)
- GrpRWS_Order (Example H81E6)
- Grp_Order (Example H63E19)
- RngMPolLoc_Order (Example H114E1)
V2.28, 13 July 2023