Operations on Elements

Contents

Equality and Comparison

u eq v : GrpBBElt, GrpBBElt -> BoolElt
Returns true if and only if the underlying concrete group elements for u and v are equal.
u ne v : GrpBBElt, GrpBBElt -> BoolElt
Returns true if and only if the underlying concrete group elements for u and v are not equal.

Attributes of Elements

Parent(u) : GrpBBElt -> GrpBB
The parent group G of the element u.
UnderlyingElement(u) : GrpBBElt -> GrpElt
The concrete group element corresponding to the BB-group element u.
Order(u) : GrpBBElt -> RngIntElt
The order of the underlying concrete group element of u.

Example GrpBB_standard-gens (H70E1)

The following function takes a black box group isomorphic to M24 and finds standard generators. It is taken from the ATLAS of Finite Group Representations page on M24.
> m24_standard := function(B)
> repeat a := PseudoRandom(B); until Order(a) eq 10;
> a := a ^ 5;
> repeat b := PseudoRandom(B); until Order(b) eq 15;
> b := b ^ 5;
> repeat b := b ^ PseudoRandom(B); ab := a*b;
> until Order(ab) eq 23;
> x := ab*(ab^2*b)^2*ab*b;
> if Order(x) eq 5 then b := b^-1; end if;
> return a,b;
> end function;
We take a group which must be M24 and find these generators.
> G := PermutationGroup<24 |
> [ 20, 4, 10, 3, 15, 9, 7, 1, 11, 22, 21, 19, 8, 2, 24, 5,
> 12, 18, 13, 16, 14, 23, 6, 17 ],
> [ 12, 18, 3, 2, 7, 11, 5, 21, 19, 22, 23, 1, 14, 17, 10,
> 8, 4, 13, 24, 20, 9, 15, 6, 16 ]>;
> #G;
244823040
> Transitivity(G);
5
> B := NaturalBlackBoxGroup(G);
> a,b := m24_standard(B); a,b;
GrpBBElt (1, 16)(2, 22)(3, 14)(4, 15)(5, 11)(6, 24)(7,
10)(8, 18)(9, 19)(12, 17)(13, 20)(21, 23)
GrpBBElt (1, 14, 17)(2, 18, 13)(5, 16, 20)(7, 22, 9)(8, 24,
15)(19, 23, 21)
The printing of the GrpBBElts shows the underlying concrete group elements. These may be extracted using the UnderlyingElement intrinsic for use within G.
V2.28, 13 July 2023