Returns true if the group G is abelian, false otherwise.
Returns true if the group G is cyclic, false otherwise.
Returns true if the group G is elementary abelian, false otherwise.
Returns true if the group G is nilpotent, false otherwise.
Returns true if the group G is soluble, false otherwise.
Returns true if the group G is perfect, false otherwise.
Returns true if the group G is simple, false otherwise.
> F9<w> := GF(9); > y := w^6; z := w^2; > J2A2 := MatrixGroup< 6, F9 | [y, 1-y, z,0,0,0, 1-y ,z, -1,0,0,0, z, -1,1+y, > 0,0,0,0,0,0, z, 1+y, y, 0,0,0,1+y, y, -1, 0, > 0,0, y ,-1,1-y], > [1+y, z, y, 0,0,0, z, 1+y, z, 0,0,0, y, z, 1+y, > 0,0,0, z, 0,0,1-y, y, z, 0, z, 0, y, 1-y, y, > 0,0, z, z, y, 1-y], > [0,0,0,y, 0,0, 0,0,0,0,y, 0, 0,0,0,0,0,y, > y, 0,0,0,0,0, 0,y, 0,0,0,0, 0,0,y, 0,0,0] >; > J2A2; MatrixGroup(6, GF(3, 2)) Generators: [w^6 w^3 w^2 0 0 0] [w^3 w^2 2 0 0 0] [w^2 2 w 0 0 0] [ 0 0 0 w^2 w w^6] [ 0 0 0 w w^6 2] [ 0 0 0 w^6 2 w^3] [ w w^2 w^6 0 0 0] [w^2 w w^2 0 0 0] [w^6 w^2 w 0 0 0] [w^2 0 0 w^3 w^6 w^2] [ 0 w^2 0 w^6 w^3 w^6] [ 0 0 w^2 w^2 w^6 w^3] [ 0 0 0 w^6 0 0] [ 0 0 0 0 w^6 0] [ 0 0 0 0 0 w^6] [w^6 0 0 0 0 0] [ 0 w^6 0 0 0 0] [ 0 0 w^6 0 0 0] > Order(J2A2); 1209600 > FactoredOrder(J2A2); [ <2, 8>, <3, 3>, <5, 2>, <7, 1> ] > IsSoluble(J2A2); false > IsPerfect(J2A2); true > IsSimple(J2A2); false
Thus the group is non-soluble and perfect but it is not a simple group. We examine its Sylow2-subgroup.
> S2 := SylowSubgroup(J2A2, 2); > IsAbelian(S2); false > IsNilpotent(S2); true > IsSpecial(S2); false