Abstract Group Predicates

IsAbelian(G) : GrpMat -> BoolElt
Returns true if the group G is abelian, false otherwise.
IsCyclic(G) : GrpMat -> BoolElt
Returns true if the group G is cyclic, false otherwise.
IsElementaryAbelian(G) : GrpMat -> BoolElt
Returns true if the group G is elementary abelian, false otherwise.
IsNilpotent(G) : GrpMat -> BoolElt
Returns true if the group G is nilpotent, false otherwise.
IsSoluble(G) : GrpMat -> BoolElt
IsSolvable(G) : GrpMat -> BoolElt
Returns true if the group G is soluble, false otherwise.
IsPerfect(G) : GrpMat -> BoolElt
Returns true if the group G is perfect, false otherwise.
IsSimple(G) : GrpMat -> BoolElt
Returns true if the group G is simple, false otherwise.

Example GrpMatGen_Order (H65E11)

We illustrate the functions of the last two section by applying them to a group of degree 6 over the field GF(9).
> F9<w> := GF(9);
> y := w^6;  z := w^2;
> J2A2 := MatrixGroup< 6, F9 | [y, 1-y, z,0,0,0, 1-y ,z, -1,0,0,0, z, -1,1+y,
>                               0,0,0,0,0,0, z, 1+y, y, 0,0,0,1+y, y, -1, 0,
>                               0,0, y ,-1,1-y],
>                              [1+y, z, y, 0,0,0, z, 1+y, z, 0,0,0, y, z, 1+y,
>                               0,0,0, z, 0,0,1-y, y, z, 0, z, 0, y, 1-y, y,
>                               0,0, z, z, y, 1-y],
>                              [0,0,0,y, 0,0, 0,0,0,0,y, 0, 0,0,0,0,0,y,
>                               y, 0,0,0,0,0, 0,y, 0,0,0,0, 0,0,y, 0,0,0] >;
> J2A2;
MatrixGroup(6, GF(3, 2))
Generators:
[w^6 w^3 w^2   0   0   0]
[w^3 w^2   2   0   0   0]
[w^2   2   w   0   0   0]
[  0   0   0 w^2   w w^6]
[  0   0   0   w w^6   2]
[  0   0   0 w^6   2 w^3]
[  w w^2 w^6   0   0   0]
[w^2   w w^2   0   0   0]
[w^6 w^2   w   0   0   0]
[w^2   0   0 w^3 w^6 w^2]
[  0 w^2   0 w^6 w^3 w^6]
[  0   0 w^2 w^2 w^6 w^3]
[  0   0   0 w^6   0   0]
[  0   0   0   0 w^6   0]
[  0   0   0   0   0 w^6]
[w^6   0   0   0   0   0]
[  0 w^6   0   0   0   0]
[  0   0 w^6   0   0   0]
> Order(J2A2);
1209600
> FactoredOrder(J2A2);
[ <2, 8>, <3, 3>, <5, 2>, <7, 1> ]
> IsSoluble(J2A2);
false
> IsPerfect(J2A2);
true
> IsSimple(J2A2);
false

Thus the group is non-soluble and perfect but it is not a simple group. We examine its Sylow2-subgroup.

> S2 := SylowSubgroup(J2A2, 2);
> IsAbelian(S2);
false
> IsNilpotent(S2);
true
> IsSpecial(S2);
false
V2.28, 13 July 2023