Related Maps

This section is devoted to maps between differential operator rings.

TranslationMap(R, e) : RngDiffOp, RngElt -> Map
Returns a map on the differential operator ring R that replaces R.1 by R.1 + e when applied to a differential operator for some suitable ring element e.
LiftMap(m, R) : Map, RngDiffOp -> Map
Let m : F to M be a differential map on differential fields and R a differential operator ring over F. Then this routine lifts the given map to a map on the differential operator rings R to S, where the basefield of S is M.

Example RngDiff_example-maps-between-diff-op-rings (H118E45)

> F<z> := RationalDifferentialField(Rationals());
> R<D> := DifferentialOperatorRing(F);
> transmap := TranslationMap(R, 2 + z);
> Codomain(transmap) eq R;
> transmap(D);
D + z + 2
> transmap(D^2);
D^2 + (2*z + 4)*D + z^2 + 4*z + 5
> P<T> := PolynomialRing(F);
> M<u>, mp := ext<F|T^2+z>;
> liftmap := LiftMap(mp, R);
> Rprime<Dprime> := Codomain(liftmap);
> IsDifferentialOperatorRing(Rprime);
true
> BaseRing(Rprime) eq M;
true
> liftmap(D);
Dprime
> liftmap(R!z);
z
> Derivation(Rprime)(liftmap(z));
1
> Derivation(Rprime)(u);
1/2/z*u
V2.28, 13 July 2023