- TwistedGrpLieType1
- TwistedGrpLieType2
- TwistedHyperellipticPolynomialsFromShiodaInvariants
- TwistedLieAlgebra
- TwistedLieTypeRewrite
- TwistedLieTypeRewrite(t,r,q,X,Y,g) : MonStgElt,RngIntElt,RngIntElt,SeqEnum,SeqEnum,GrpMatElt -> BoolElt, GrpSLPElt
- LieTypeRewrite(t,r,q,X,Y,g) : MonStgElt,RngIntElt,RngIntElt,SeqEnum,SeqEnum,GrpMatElt -> BoolElt, GrpSLPElt
- TwistedPolynomials
- TwistedPrepareRewrite
- TwistedPrepareRewrite(t,r,q,X,Y) : MonStgElt,RngIntElt,RngIntElt, SeqEnum,SeqEnum -> UserProgram, Map
- PrepareRewrite(t,r,q,X,Y) : MonStgElt,RngIntElt,RngIntElt,SeqEnum,SeqEnum -> UserProgram, Map
- TwistedQRCode
- TwistedRootDatum
- TwistedRowReductionMap
- TwistedSemilinearDual
- TwistedTori
- TwistedToriOrders
- TwistedTorus
- TwistedTorusOrder
- TwistedWindingElement
- TwistedWindingSubmodule
- Twisting
- TwistingDegree
- Twists
- twists
- twists-ex
- Twists2
- TwistsFromG2Invariants
- TwistsFromIgusaInvariants
- TwistsFromShiodaInvariants
- TwistsOfHyperellipticPolynomials
- TwistsOfPlaneQuartic
- Two
- BasisOfHolomorphicTwoForms(S) : Srfc -> SeqEnum[RngMPolElt], RngMPolElt, SeqEnum, List
- ClassTwo(p, d : parameters) : RngIntElt, RngIntElt -> SeqEnum
- DegreeTwoK3Surface(f) : RngMPolElt -> Srfc
- EisensteinTwo(E, p) : CrvEll, RngIntElt -> FldPadElt
- FourToTwoCovering(model : parameters) : ModelG1 -> Crv, Crv, MapSch
- IdentifyTwoCocycle(CM, s) : ModCoho, UserProgram -> ModTupRngElt
- IsLeftIdeal(I) : AlgAssVOrdIdl -> BoolElt
- IsLocallyTwoTransitive(C) : CosetGeom -> BoolElt
- IsTwoCoboundary(CM, s) : ModCoho, UserProgram -> BoolElt, UserProgram
- LiftDescendant(C) : CrvHyp -> SeqEnum[ CrvHyp ], List, MapSch
- LocalTwoSelmerMap(P) : RngOrdIdl -> Map
- LocalTwoSelmerMap(A, P) : RngUPolRes, RngOrdIdl -> Map, SeqEnum
- QuadraticClassGroupTwoPart(K) : FldQuad -> GrpAb, Map
- TwoCocycle(A) : FldAb -> UserProgram
- TwoCocycle(CM, s) : ModCoho, SeqEnum -> UserProgram
- TwoCover(e) : FldNumElt -> CrvHyp, Map
- TwoCoverDescent(C) : CrvHyp -> SetEnum, Map, [Map, SeqEnum]
- TwoCoverPullback(H, pt) : CrvHyp[FldRat], PtEll[FldRat] -> [PtHyp]
- TwoDescent(E) : CrvEll[FldFunG] -> SeqEnum[CrvHyp], List[MapSch]
- TwoDescent(E: parameters) : CrvEll -> [CrvHyp] , [Map], Map
- TwoElement(I) : OMIdl -> FldArithElt, FldArithElt
- TwoElement(I) : OMIdl -> FldArithElt, FldArithElt
- TwoElement(I) : RngFunOrdIdl -> RngElt, RngElt
- TwoElement(I) : RngOrdFracIdl -> FldOrdElt, FldOrdElt
- TwoElementNormal(I) : RngInt -> RngIntElt, RngIntElt
- TwoElementNormal(I) : RngOrdIdl -> RngOrdElt, RngOrdElt, RngIntElt
- TwoGenerators(P) : PlcCrvElt -> FldFunFracSchElt, FldFunFracSchElt
- TwoGenerators(P) : PlcFunElt -> FldFunGElt, FldFunGElt
- TwoGenus(X) : GRK3 -> RngIntElt
- TwoIsogeny(P) : PtEll -> Map
- TwoIsogenyDescent(E : parameters) : CrvEll -> SeqEnum[CrvHyp], List, SeqEnum[CrvHyp], List, MapSch, MapSch
- TwoIsogenySelmerGroups(E) : CrvEll[FldFunG] -> GrpAb, GrpAb, MapSch, MapSch
- TwoPowerIsogenies(J) : JacHyp -> SeqEnum, SeqEnum, SeqEnum
- TwoPowerIsogenyDescentRankBound(E, T : parameters) : CrvEll[FldRat], PtEll[FldRat] ) -> RngIntElt, SeqEnum, SeqEnum
- TwoSelmerGroup(E) : CrvEll -> GrpAb, Map, SetEnum, Map, SeqEnum
- TwoSelmerGroup(E) : CrvEll[FldFunG] -> GrpAb, MapSch
- TwoSelmerGroup(J) : JacHyp -> GrpAb, Map, Any, Any
- TwoSidedIdealClassGroup(S : Support) : AlgAssVOrd -> GrpAb, Map
- TwoSidedIdealClasses(S) : AlgQuatOrd -> [AlgQuatOrdIdl]
- TwoTorsionPolynomial(E) : CrvEll -> RngMPolElt
- TwoTorsionSubgroup(E) : CrvEll -> GrpAb, Map
- TwoTorsionSubgroup(J) : JacHyp -> GrpAb, Map
- TwoTorsionSubgroup(Q) : QuadBin -> GrpAb, Map
- TwoTransitiveGroupIdentification(G) : GrpPerm -> Tup
V2.28, 13 July 2023