The Restriction to a Subgroup

Restriction(CM, H) : ModCoho, Grp -> ModCoho
Given a cohomology module for a group G and a subgroup H of G, form the restriction of the input cohomology module to H.

Note that, denoting this restriction by CMH, we can define the restriction maps on the first and second cohomology groups of CM by

>  res1 := hom<CohomologyGroup(CM, 1) -> CohomologyGroup(CMH, 1) |
>                        x:->IdentifyOneCocycle(CMH,OneCocycle(CM,x)) >;
>  res2 := hom<CohomologyGroup(CM, 2) -> CohomologyGroup(CMH, 2) |
>                        x:->IdentifyTwoCocycle(CMH,TwoCocycle(CM,x)) >;

Example GrpCoh_restriction (H74E12)

In this example we define G to be the group GL(3, 2) and H to be the Sylow 2-subgroup of G. We illustrate how to calculate the restriction mappings of Hn(G, M) to Hn(G, MH), where MH is the restriction of M to H.
> G := GL(3, 2);
> M := GModule(G);
> H := Sylow(G, 2);
> CG := CohomologyModule(G, M);
> CH := Restriction(CG, H);

We first consider H1(G, M).

> H1G := CohomologyGroup(CG, 1); H1G;
Full Vector space of degree 1 over GF(2)
> H1H := CohomologyGroup(CH, 1); H1H;
Full Vector space of degree 2 over GF(2)
> res1 := hom<H1G -> H1H | x:->IdentifyOneCocycle(CH,OneCocycle(CG,x)) >;
> res1(H1G.1);
(1 1)

We now consider H2(G, M).

> H2G := CohomologyGroup(CG, 2); H2G;
Full Vector space of degree 1 over GF(2)
> H2H := CohomologyGroup(CH, 2); H2H;
Full Vector space of degree 3 over GF(2)
> res2 := hom<H2G -> H2H | x:-> IdentifyTwoCocycle(CH,TwoCocycle(CG,x)) >;
> res2(H2G.1);
(0 0 1)

In the case of a zero restriction, we can find a corresponding coboundary.

> H:=sub< G | G.2, G.2^(G.1*G.2*G.1) >;
> #H;
21
> CH := Restriction(CG, H);
> CohomologyGroup(CH, 1); CohomologyGroup(CH, 2);
Full Vector space of degree 0 over GF(2)
Full Vector space of degree 0 over GF(2)
> t:=TwoCocycle(CG,[1]);
> isc, o := IsTwoCoboundary(CH, t);
> isc;
true
> forall{ <h,k> : h in H, k in H | t(<h,k>) eq
>            o(<h>)*MatrixOfElement(CH,k) + o(<k>) - o(<h*k>) };
true
V2.28, 13 July 2023