- generator
- generator-assignment
- generator-polynomial
- generator-primitive
- generator-primitive-normal
- GeneratorMatrix
- GeneratorNaming
- GeneratorNamingSequence
- GeneratorNumber
- GeneratorOrder
- GeneratorPolynomial
- Generators
- ActionGenerators(M) : ModGrp -> [ AlgMatElt ]
- AddRedundantGenerators(G, Q) : GrpSLP, [ GrpSLPElt ] -> GrpSLP
- AlgebraGenerators(A) : AlgMat -> Rec
- AlgebraicGenerators(G) : GrpLie ->
- AreGenerators(S) : SetEnum -> BoolElt
- Basis(C) : Code -> [ ModTupRngElt ]
- Basis(H) : HomModAbVar -> SeqEnum
- Basis(T) : TenSpc -> SeqEnum
- CanonicalGenerators(G) : GrpPerm -> SeqEnum[GrpPermElt], GrpPermElt
- ClassGroupCyclicFactorGenerators(O) : RngOrd -> ModHomElt
- ClassicalStandardGenerators(type, d, q) : MonStgElt, RngIntElt, RngIntElt -> []
- CohomologyLeftModuleGenerators(P, CP, Q) : Tup, Tup, Tup -> Tup
- CohomologyRightModuleGenerators(P, Q, CQ) : Rec, Rec, Rec -> Rec
- CohomologyRingGenerators(P) : Rec -> Rec
- DegreesOfCohomologyGenerators(C) : Rec -> SeqEnum
- Dimension(C) : Code -> RngIntElt
- Eliminate(~P: parameters) : GrpFPTietzeProc ->
- ExceptionalStandardGenerators(type, rank, q) : MonStgElt, RngIntElt, RngIntElt -> []
- ExtGenerators(G, U) : GrpPC, GrpPC -> [<AlgMatElt, RngIntElt>]
- ExtractGenerators(P) : GrpFPLixProc -> { GrpFPElt }
- FewGenerators(G) : GrpPerm -> [GrpPermElt]
- FindFirstGenerators(g) : FldFunRatUElt -> SeqEnum
- FindGenerators(G) : GrpFP -> []
- FreeGenerators(H) : GrpFP -> SeqEnum, GrpFP
- Generators(O) : AlgAssVOrd -> [AlgAssVElt]
- Generators(I) : AlgAssVOrdIdl[RngOrd] -> [AlgAssVOrdElt]
- Generators(B) : AlgBas -> SeqEnum
- Generators(R) : AlgMat -> { AlgMatElt }
- Generators(C) : Code -> { ModTupFldElt }
- Generators(C) : Code -> { ModTupRngElt }
- Generators(E) : CrvEll[FldFunRat] -> SeqEnum
- Generators(A) : FldAb -> [ ], [ ], [ ]
- Generators(K): FldAlg -> [FldAlgElt]
- Generators(K, k) : FldAlg, FldAlg -> [FldAlgElt]
- Generators(K, k) : FldAlg, FldAlg -> [FldAlgElt]
- Generators(K): FldNum -> FldNumElt
- Generators(G) : Grp -> { GrpFinElt }
- Generators(A) : GrpAb -> { GrpAbElt }
- Generators(A) : GrpAbGen -> [ GrpAbGenElt ]
- Generators(A) : GrpAutCrv -> SeqEnum
- Generators(A) : GrpAuto -> SetEnum
- Generators(G) : GrpBB -> { GrpBBElt }
- Generators(G) : GrpDrch -> [GrpDrchElt]
- Generators(G) : GrpFP -> { GrpFPElt }
- Generators(G) : GrpGPC -> {@ GrpGPCElt @}
- Generators(H, G) : GrpGPC, GrpGPC -> {@ GrpGPCElt @}
- Generators(G) : GrpLie ->
- Generators(G) : GrpMat -> { GrpMatElt }
- Generators(G) : GrpPC -> SetEnum
- Generators(G) : GrpPerm -> { GrpPermElt }
- Generators(G) : GrpPSL2 -> SeqEnum
- Generators(G) : GrpRWS -> [GrpRWSElt]
- Generators(G) : GrpRWS -> [GrpRWSElt]
- Generators(G) : GrpSLP -> { GrpSLPElt }
- Generators(L) : LatNF -> SeqEnum
- Generators(G) : ModAbVarSubGrp -> SeqEnum
- Generators(M) : ModRng -> { ModRngElt }
- Generators(V) : ModTupFld -> { ModElt }
- Generators(M) : ModTupRng -> { ModTupRngElt }
- Generators(M) : MonRWS -> [ MonRWSElt]
- Generators(B: parameters) : GrpBrd -> [ GrpBrd ]
- Generators(R) : RngDiff -> SeqEnum
- Generators(I) : RngFunOrdIdl -> [ RngFunOrdElt ]
- Generators(I) : RngOrdIdl -> [ RngOrdElt ]
- Generators(H) : SetPtEll -> [ PtEll ]
- Generators(H) : SetPtEll -> [ PtEll ]
- Generators(S) : SgpFP -> { SgpFPElt }
- Generators(FS) : SymFry -> SeqEnum
- GeneratorsOfGroupOfUnits(A) : AlgBas -> SeqEnum, SeqEnum
- GeneratorsOverBaseRing(K) : FldNum -> FldNumElt
- GeneratorsSequence(K): FldNum -> [FldNumElt]
- GeneratorsSequence(G) : GrpPerm -> [ GrpPermElt ]
- GeneratorsSequenceOverBaseRing(K) : FldNum -> [FldNumElt]
- GoodBasisOfNormGenerators(L, p) : LatNF, RngOrdIdl -> SeqEnum, SeqEnum
- HomGenerators(G, H) : GrpAb, GrpAb -> GrpAb, Map
- HomGenerators(G, U) : GrpPC, GrpPC -> [<AlgMatElt, RngIntElt>]
- HomologyGenerators(X) : SmpCpx ->
- IdempotentActionGenerators(B, i) : AlgBas, RngIntElt -> SeqEnum
- IdempotentGenerators(B) : AlgBas -> SeqEnum
- InnerGenerators(A) : GrpAuto -> SeqEnum
- IrreducibleHighestWeightGenerators(G,w) : GrpLie, SeqEnum -> SeqEnum,SeqEnum
- IrrelevantGenerators(C) : RngCox -> SeqEnum
- IsLinearlyDependent(points) : [PtEll] -> BoolElt, ModTupRngElt
- LieTypeGenerators(t,k,q) : MonStgElt, RngIntElt, RngIntElt -> SeqEnum,SeqEnum
- LinearSpanGenerators(C) : TorCon -> SeqEnum
- LinearSubspaceGenerators(C) : TorCon -> SeqEnum
- MinimalAlgebraGenerators(L) : [ RngMPol ] -> [ RngMPol ]
- MinimalAlgebraGenerators(L) : [ RngMPol ] -> [ RngMPol ]
- MinimizeGenerators(L) : [FldFunRatElt] -> [FldFunRatElt]
- Ngens(M) : ModDed -> RngIntElt
- NonIdempotentActionGenerators(B, i) : AlgBas, RngIntElt -> SeqEnum
- NonIdempotentGenerators(B) : AlgBas -> SeqEnum
- NoncentralGeneratorsOfGroupOfUnits(A) : AlgBas -> SeqEnum, SeqEnum
- NumberOfActionGenerators(L) : Lat -> RngIntElt
- NumberOfActionGenerators(M) : ModGrp -> RngIntElt
- NumberOfActionGenerators(M) : ModRng -> RngIntElt
- NumberOfAlgebraicGenerators(G) : GrpLie -> RngIntElt
- NumberOfGenerators(B) : AlgBas -> RngIntElt
- NumberOfGenerators(L) : AlgLieExtr -> RngIntElt
- NumberOfGenerators(R) : AlgMat -> { AlgMatElt }
- NumberOfGenerators(C) : Code -> RngIntElt
- NumberOfGenerators(G) : Grp -> RngIntElt
- NumberOfGenerators(A) : GrpAb -> RngIntElt
- NumberOfGenerators(A) : GrpAbGen -> RngIntElt
- NumberOfGenerators(A) : GrpAutCrv -> RngIntElt
- NumberOfGenerators(A) : GrpAuto -> RngIntElt
- NumberOfGenerators(G) : GrpBB -> RngIntElt
- NumberOfGenerators(B) : GrpBrd -> RngIntElt
- NumberOfGenerators(G) : GrpDrch -> RngIntElt
- NumberOfGenerators(G) : GrpFP -> RngIntElt
- NumberOfGenerators(P) : GrpFPTietzeProc -> RngIntElt
- NumberOfGenerators(G) : GrpGPC -> RngIntElt
- NumberOfGenerators(G) : GrpLie -> RngIntElt
- NumberOfGenerators(G) : GrpMat -> RngIntElt
- NumberOfGenerators(G) : GrpPC -> RngIntElt
- NumberOfGenerators(G) : GrpPerm -> RngIntElt
- NumberOfGenerators(G) : GrpRWS -> RngIntElt
- NumberOfGenerators(G) : GrpRWS -> RngIntElt
- NumberOfGenerators(G) : GrpSLP -> RngIntElt
- NumberOfGenerators(M) : ModTupFld -> RngIntElt
- NumberOfGenerators(M) : MonRWS -> RngIntElt
- NumberOfGenerators(H) : SetPtEll -> RngIntElt
- NumberOfGenerators(H) : SetPtEll -> RngIntElt
- NumberOfGenerators(S) : SgpFP -> RngIntElt
- NumberOfGenerators(T) : TenSpc -> RngIntElt
- NumberOfStrongGenerators(G) : GrpMat -> RngIntElt
- NumberOfStrongGenerators(G) : GrpPerm -> RngIntElt
- NumberOfStrongGenerators(G, i) : GrpPerm, RngIntElt -> RngIntElt
- PolycyclicGenerators(G) : GrpMat -> [ GrpPCElt ]
- PrincipalUnitGroupGenerators(R) : RngPad -> SeqEnum
- PseudoDimension(C) : Code -> RngIntElt
- PseudoGenerators(M): ModDed -> SeqEnum
- QuotientGenerators(C) : TorCon -> SetEnum
- Rank(W) : GrpFPCox -> RngIntElt
- Rank(W) : GrpMat -> RngIntElt
- ReduceGenerators(G) : GrpFP -> GrpFP, Map
- ReduceGenerators(~G) : GrpPerm ->
- RestrictionOfGenerators(PR1, PR2, AC1, AC2, REL2) : Rec, Rec, Rec, Rec, Rec -> SeqEnum
- ScaleGenerators(s,ls) : RngPowAlgElt, SeqEnum -> RngPowAlgElt
- SchreierGenerators(G, H : parameters) : GrpFP, GrpFP -> { GrpFPElt }
- SequenceOfRadicalGenerators(A) : AlgMat -> SeqEnum
- SpinorGenerators(G) : SymGen -> [ RngIntElt ]
- StandardGenerators(L) : AlgKac -> SeqEnum[AlgKacElt], SeqEnum[AlgKacElt], SeqEnum[AlgKacElt]
- StandardGenerators(G, str : parameters) : Grp, MonStgElt -> BoolElt, SeqEnum, SeqEnum
- StandardGeneratorsGroupNames() : -> SetIndx
- StrongGenerators(G) : GrpMat -> SetIndx(GrpMat)
- StrongGenerators(G) : GrpPerm -> SetIndx(GrpPermElt)
- StrongGenerators(G, i) : GrpPerm, RngIntElt -> SetIndx(GrpPermElt)
- TwoGenerators(P) : PlcCrvElt -> FldFunFracSchElt, FldFunFracSchElt
- TwoGenerators(P) : PlcFunElt -> FldFunGElt, FldFunGElt
- UnitGenerators(G) : GrpDrch -> [RngIntElt]
- UnitGroupGenerators(F) : FldPad -> SeqEnum
- UnitGroupGenerators(R) : RngPad -> SeqEnum
- UnivariateEliminationIdealGenerators(I) : RngMPol -> [ RngMPolElt ]
- UserGenerators(A) : GrpAbGen -> [ GrpAbGenElt ]
- ValuesOnUnitGenerators(chi) : GrpDrchElt -> [RngElt]
- WordInStrongGenerators(H, x) : GrpPerm, GrpPermElt -> GrpFPElt
- qExpansionsOfGenerators(N,R,r) : RngIntElt, RngSerLaur, RngIntElt -> SeqEnum
- GrpLie_Generators (Example H110E6)
- Grp_Generators (Example H63E16)
V2.28, 13 July 2023