- Nonassociative-algebras-with-involutions
- Noncentral
- NoncentralGeneratorsOfGroupOfUnits
- NonCuspidalQRationalPoints
- Nondegeneracy
- Nondegenerate
- NondegenerateTensor
- NonExample
- NonIdempotentActionGenerators
- NonIdempotentGenerators
- nonintegral
- Nonisomorphism1
- Nonisomorphism2
- NonNilpotentElement
- NonOrdinaryPrimes
- nonordsings
- NonPrimitiveAlternantCode
- NonquadraticTwists
- NonQuantCombs
- nonred
- nonred-root-data
- nonred-root-systems
- NonSimplicialCones
- Nonsingular
- Nonsolvable
- NonsolvableSubgroups
- NonSpecialDivisor
- nonsplit $2^5.L_5(2)
- nonsquare-sha
- Norm
- A`NormGroup : FldAb -> Rec
- A`DefiningGroup : FldAb -> Rec
- AbsoluteNorm(a) : FldAlgElt -> FldRatElt
- AbsoluteNorm(a) : FldFinElt -> FldFinElt
- AbsoluteNorm(a) : FldNumElt -> FldRatElt
- AbsoluteNorm(I) : RngOrdIdl -> RngIntElt
- DefiniteNorm(gamma) : AlgQuatElt -> FldReElt
- EuclideanNorm(n) : RngIntElt -> RngIntElt
- EuclideanNorm(a) : RngOrdResElt -> RngIntElt
- EuclideanNorm(x) : RngPadResElt -> RngIntElt
- EuclideanNorm(p) : RngUPol -> RngIntElt
- EuclideanNorm(v) : RngValElt -> RngIntElt
- GenericNorm(x) : AlgGenElt -> FldElt
- GoodBasisOfNormGenerators(L, p) : LatNF, RngOrdIdl -> SeqEnum, SeqEnum
- IntegralNormEquation(a, N, O) : RngElt, Map, RngOrd -> BoolElt, [RngOrdElt]
- IsLocalNorm(A, x) : FldAb, RngOrdElt -> BoolElt
- IsLocalNorm(A, x, p) : FldAb, RngOrdElt, PlcNumElt -> BoolElt
- IsLocalNorm(A, x, i) : FldAb, RngOrdElt, RngIntElt -> BoolElt
- IsLocalNorm(A, x, p) : FldAb, RngOrdElt, RngOrdIdl -> BoolElt
- IsNorm(A, x) : FldAb, RngOrdElt -> BoolElt
- IsSpinorNorm(G,p) : SymGen, RngIntElt -> RngIntElt
- MaxNorm(f) : RngMPolElt -> RngIntElt
- MaxNorm(p) : RngUPolElt -> RngIntElt
- MaximalNormSplitting(L, p) : LatNF, RngOrdIdl -> SeqEnum, List
- Norm(x) : AlgAssVOrdElt -> RngElt
- Norm(I) : AlgAssVOrdIdl[RngOrd] -> RngOrdIdl
- Norm(x) : AlgChtrElt -> FldCycElt
- Norm(x) : AlgQuatElt -> FldElt
- Norm(I) : AlgQuatOrdIdl -> RngElt
- Norm(D) : DivFunElt -> DivFunElt
- Norm(a) : FldACElt -> FldACElt
- Norm(a) : FldAlgElt -> FldAlgElt
- Norm(c) : FldComElt -> FldReElt
- Norm(a) : FldFinElt -> FldFinElt
- Norm(a, E) : FldFinElt, FldFin -> FldFinElt
- Norm(a, R) : FldFunElt, Rng -> RngElt
- Norm(a) : FldNumElt -> FldNumElt
- Norm(q) : FldRatElt -> FldRatElt
- Norm(v) : LatElt -> RngElt
- Norm(L) : LatNF -> RngOrdFracIdl
- Norm(v) : LatNFElt -> FldNumElt
- Norm(m1, m2, G) : Map, Map, GrpAb -> GrpAb
- Norm(x) : ModBrdtElt -> RngElt
- Norm(u) : ModTupFldElt -> FldElt
- Norm(u) : ModTupRngElt -> RngElt
- Norm(I) : OMIdl -> RngElt
- Norm(I) : OMIdl -> RngElt
- Norm(P) : PlcFunElt -> DivFunElt
- Norm(I) : RngFunOrdIdl -> Any
- Norm(n) : RngIntElt -> RngIntElt
- Norm(a) : RngLocAElt -> RngElt
- Norm(I) : RngOrdIdl -> RngIntElt
- Norm(x) : RngPadElt -> RngPadElt
- Norm(x, R) : RngPadElt, RngPad -> RngPadElt
- NormEquation(A, x) : FldAb, RngOrdElt -> BoolElt, [RngOrdElt]
- NormEquation(F, m) : FldAlg, RngIntElt -> BoolElt, [ FldAlgElt ]
- NormEquation(K, y) : FldFin, FldFin -> BoolElt, FldFinElt
- NormEquation(R, m, b) : FldPad, Map, RngElt -> BoolElt, RngElt
- NormEquation(F, m) : FldQuad, RngIntElt -> BoolElt, SeqEnum
- NormEquation(m1, m2, G) : Map, Map, GrpAb -> GrpAb, Map
- NormEquation(m, N): RngElt, Map -> BoolElt, RngElt
- NormEquation(d, m) : RngIntElt, RngIntElt -> BoolElt, RngIntElt, RngIntElt
- NormEquation(O, m) : RngOrd, RngIntElt -> BoolElt, [ RngOrdElt ]
- NormGroup(A) : AlgMat -> GrpMat
- NormGroup(A) : FldAb -> Map, RngOrdIdl, [RngIntElt]
- NormGroup(F) : FldFun -> DivFunElt, GrpAb
- NormGroup(R, m) : FldPad, Map -> GrpAb, Map
- NormGroupDiscriminant(m, G) : Map, GrpAb -> RngIntElt
- NormInduction(K, chi) : FldNum, GrpDrchElt -> GrpHeckeElt
- NormKernel(m1, m2) : Map, Map -> GrpAb
- NormOneGroup(S) : AlgAssVOrd -> GrpPerm, Map
- NormResidueSymbol(a, b, p) : FldRatElt, FldRatElt, RngIntElt -> RngIntElt
- NormSpace(A) : AlgQuat -> ModTupFld, Map
- NormSpace(S) : AlgQuatOrd -> ModTupRng, Map
- QuadraticNorm(v) : ModTupFldElt -> FldElt
- RootNorm(G, r) : GrpLie, RngIntElt -> RngIntElt
- RootNorm(W, r) : GrpPermCox, RngIntElt -> RngIntElt
- RootNorm(R, r) : RootStr, RngIntElt -> RngIntElt
- RootNorm(R, r) : RootSys, RngIntElt -> RngIntElt
- SpinorNorm(g, form): GrpMatElt, AlgMatElt -> RngIntElt
- SpinorNorm(L, p) : LatNF, RngOrdIdl -> ModTupFld, Map, BoolElt
- SpinorNorm(V, f) : ModTupFld, Mtrx -> RngIntElt
- SumNorm(f) : RngMPolElt -> RngIntElt
- SumNorm(p) : RngUPolElt -> RngIntElt
V2.28, 13 July 2023