- rm
- RMatrix
- RMatrixSpace
- RMatrixSpaceWithBasis
- RModule
- RModuleWithAction
- RModuleWithBasis
- RMZ4
- rng
- rngloc-galoisgroup
- rngloc-splittingfield
- Roch
- RiemannRochBasis(X, I) : Sch, RngMPol -> SeqEnum, RngMPolElt, ShfCoh
- DivisorToSheaf(X, I) : Sch, RngMPol -> ShfCoh
- IneffectiveDivisorToSheaf(X, I, J) : Sch, RngMPol, RngMPol -> ShfCoh
- RiemannRochBasis(D) : DivSchElt -> SeqEnum
- RiemannRochBasis(D) : DivTorElt -> [RngElt]
- RiemannRochCoordinates(f,D) : Any, DivSchElt -> BoolElt, SeqEnum
- RiemannRochDimension(D) : DivTorElt -> RngIntElt
- RiemannRochPolytope(D) : DivTorElt -> TorPol
- RiemannRochSpace(D) : DivCrvElt -> ModFld,Map
- RiemannRochSpace(D) : DivFunElt -> ModFld, Map
- roch
- rohrlich-example
- rohrlich-rootno
- Romberg
- RombergQuadrature
- ROOT
- Root
- AbsoluteRootNumber(K) : FldPad -> FldCycElt
- BasicRootMatrices(C) : Mtrx -> AlgMatElt, AlgMatElt
- ComplexRootDatum(k) : RngIntElt -> SeqEnum, SeqEnum, Map, GrpMat, AlgMatElt
- ComplexRootMatrices(k) : RngIntElt -> AlgMatElt, AlgMatElt, AlgMatElt, RngElt, RngIntElt
- EpsilonFactor(A,infty) : ArtRep, Infty -> FldComElt
- FullRootLattice(R) : RootDtm -> Lat, Map
- GaloisRoot(f, i, S) : RngUPolElt, RngIntElt, GaloisData -> RngElt
- GammaRootSpace(R) : RootDtm -> GSetEnum, Map
- HasRoot(p) : RngUPolElt -> BoolElt, RngElt
- HasRoot(f) : RngUPolElt -> BoolElt, RngPadElt
- HasRoot(f) : RngUPolElt -> BoolElt, RngSerElt
- HasRoot(p, S) : RngUPolElt, Rng -> BoolElt, RngElt
- HasRoot(f) : RngUPolXPadElt[RngXPad] -> BoolElt, RngXPadElt
- HasRootOfUnity(L, n) : RngPad, RngIntElt -> BoolElt
- HighestLongRoot(R) : RootStr -> .
- HighestLongRoot(R) : RootSys -> .
- HighestRoot(G) : GrpLie -> LatElt
- HighestRoot(W) : GrpPermCox -> .
- HighestRoot(R) : RootStr -> .
- HighestRoot(R) : RootSys -> .
- HighestShortRoot(G) : GrpLie -> LatElt
- HighestShortRoot(W) : GrpPermCox -> .
- HighestShortRoot(R) : RootStr -> .
- HighestShortRoot(R) : RootSys -> .
- InverseRoot(x, n) : RngPadElt, RngIntElt -> RngPadElt
- InverseRoot(x, y, n) : RngPadElt, RngPadElt, RngIntElt -> RngPadElt
- InverseSquareRoot(x) : RngPadElt -> RngPadElt
- InverseSquareRoot(x, y) : RngPadElt, RngPadElt -> RngPadElt
- IrreducibleRootDatum(X, n) : MonStgElt, RngIntElt -> RootDtm
- IrreducibleRootSystem(X, n) : MonStgElt, RngIntElt -> RootSys
- IsInRootSpace(v) : ModTupFldElt -> BoolElt
- IsInRootSpace(R,v) : RootDtm, ModTupFldElt -> BoolElt
- IsIndivisibleRoot(R, r) : RootStr, RngIntElt -> BoolElt
- IsIndivisibleRoot(R, r) : RootSys, RngIntElt -> BoolElt
- IsLongRoot(G, r) : GrpLie, RngIntElt -> BoolElt
- IsLongRoot(W, r) : GrpPermCox, RngIntElt -> BoolElt
- IsLongRoot(R, r) : RootStr, RngIntElt -> BoolElt
- IsLongRoot(R, r) : RootSys, RngIntElt -> BoolElt
- IsPartialRoot(f, c) : RngUPolElt, RngSerElt -> BoolElt
- IsRoot(v) : GrphVert -> BoolElt
- IsRoot(M) : ModMPol -> BoolElt
- IsRootSpace(V) : ModTupFld -> BoolElt
- IsShortRoot(G, r) : GrpLie, RngIntElt -> BoolElt
- IsShortRoot(W, r) : GrpPermCox, RngIntElt -> BoolElt
- IsShortRoot(R, r) : RootStr, RngIntElt -> BoolElt
- IsShortRoot(R, r) : RootSys, RngIntElt -> BoolElt
- IsUniquePartialRoot(f, c) : RngUPolElt, RngSerElt -> BoolElt
- LieRootMatrix(R,α,B) : RootDtm,ModTupFldElt,SetIndx -> AlgMatElt
- Mij2EltRootTable(seq) : SeqEnum -> SeqEnum[SeqEnum[RngIntElt]]
- OrderOfRootOfUnity(r, n) : RngElt, RngIntElt -> RngIntElt
- PrimitiveElement(R) : RngIntRes -> RngIntResElt
- PrimitiveRoot(m) : RngIntElt -> RngIntElt
- RelativeRootDatum(R) : RootDtm -> RootDtm
- RelativeRootElement(G,delta,t) : GrpLie, RngIntElt, [FldElt] -> GrpLieElt
- RelativeRootSpace(R) : RootDtm -> ModTupFld, Map
- Root(a, n) : FldACElt, RngIntElt -> FldACElt
- Root(a, n) : FldFinElt, RngIntElt -> FldFinElt
- Root(a, n) : FldNumElt, RngIntElt -> FldNumElt
- Root(r, n) : FldReElt, RngIntElt -> FldReElt
- Root(G) : GrphDir -> GrphVert
- Root(G, r) : GrpLie, RngIntElt -> (@@)
- Root(W, r) : GrpMat, RngIntElt -> (@@)
- Root(W, r) : GrpPermCox, RngIntElt -> (@@)
- Root(I, n) : RngFunOrdIdl, RngIntElt -> RngFunOrdIdl
- Root(a, n) : RngOrdElt, RngIntElt -> RngOrdElt
- Root(I, k) : RngOrdFracIdl, RngIntElt -> RngOrdFracIdl
- Root(x, n) : RngPadElt, RngIntElt -> RngPadElt
- Root(R, r) : RootStr, RngIntElt -> (@@)
- Root(R, r) : RootSys, RngIntElt -> (@@)
- RootAction(W) : GrpPermCox -> Map
- RootClosure(R, S) : RootDtm, SetEnum[RngIntElt] -> SetEnum[RngIntElt]
- RootDatum(L) : AlgLie -> RootDtm
- RootDatum(C) : AlgMatElt -> RootDtm
- RootDatum(C) : AlgMatElt -> RootDtm
- RootDatum(U) : AlgQUE -> RootDtm
- RootDatum(D) : GrphDir -> RootDtm
- RootDatum(G) : GrpLie -> RootDtm
- RootDatum(W) : GrpMat -> RootDtm
- RootDatum(W) : GrpPermCox -> RootDtm
- RootDatum(D) : LieRepDec -> RootDtm
- RootDatum(V) : ModTupFld -> RootDtm
- RootDatum(N) : MonStgElt -> RootDtm
- RootDatum(A, B) : Mtrx, Mtrx -> RootDtm
- RootDatum(R) : RootDtmSprs -> RootDtm
- RootDatum(R) : RootSys -> RootDtm
- RootGSet(W) : GrpPermCox -> GSet
- RootHeight(G, r) : GrpLie, RngIntElt -> RngIntElt
- RootHeight(W, r) : GrpPermCox, RngIntElt -> RngIntElt
- RootHeight(R, r) : RootStr, RngIntElt -> RngIntElt
- RootHeight(R, r) : RootSys, RngIntElt -> RngIntElt
- RootImages(phi) : Map -> [RngIntElt]
- RootLattice(R) : RootDtm -> Lat, Map
- RootNorm(G, r) : GrpLie, RngIntElt -> RngIntElt
- RootNorm(W, r) : GrpPermCox, RngIntElt -> RngIntElt
- RootNorm(R, r) : RootStr, RngIntElt -> RngIntElt
- RootNorm(R, r) : RootSys, RngIntElt -> RngIntElt
- RootNorms(G) : GrpLie -> [RngIntElt]
- RootNorms(W) : GrpPermCox -> [RngIntElt]
- RootNorms(R) : RootStr -> [RngIntElt]
- RootNorms(R) : RootSys -> [RngIntElt]
- RootNumber(A) : ArtRep -> FldComElt
- RootNumber(A,p) : ArtRep, RngIntElt -> FldComElt
- RootNumber(E) : CrvEll -> RngIntElt
- RootNumber(E) : CrvEll -> RngIntElt
- RootNumber(E) : CrvEll -> RngIntElt
- RootNumber(E, p) : CrvEll, RngIntElt -> RngIntElt
- RootNumber(E, P) : CrvEll, RngOrdIdl -> RngIntElt
- RootNumber(K) : FldPad -> FldCycElt
- RootNumber(A) : GalRep -> FldComElt
- RootNumber(GR) : GrossenChar -> SeqEnum
- RootNumber(GR, p) : GrossenChar, RngIntElt -> FldComElt
- RootNumber(GR, P) : GrossenChar, RngOrgIdl -> FldComElt
- RootNumber(HS) : HodgeStruc -> FldCycElt
- RootNumbers(GR) : GrossenChar -> SeqEnum
- RootOfUnity(n) : RngIntElt -> FldCycElt
- RootOfUnity(n, A) : RngIntElt, FldAC -> FldACElt
- RootOfUnity(n, K) : RngIntElt, FldCyc -> FldCycElt
- RootOfUnity(n, K) : RngIntElt, FldFin -> FldFinElt
- RootOfUnity(n, Q) : RngIntElt, FldRat -> FldRatElt
- RootPermutation(phi) : Map -> GrpPermElt
- RootPosition(G, v) : GrpLie, . -> (@@)
- RootPosition(W, v) : GrpMat, . -> (@@)
- RootPosition(W, v) : GrpPermCox, . -> (@@)
- RootPosition(R, v) : RootStr, . -> (@@)
- RootPosition(R, v) : RootSys, . -> (@@)
- RootSequence(V, f) : ModTupFld, Mtrx -> SeqEnum
- RootSide(v) : GrphVert -> GrphVert
- RootSpace(G) : GrpLie -> Lat
- RootSpace(W) : GrpMat -> Lat
- RootSpace(W) : GrpPermCox -> .
- RootSpace(R) : RootStr -> ModTupFld
- RootSpace(R) : RootSys -> ModTupFld
- RootSystem(L) : AlgLie -> [ ModTupRngElt ], [ AlgLieElt ], [ ModTupRngElt ], AlgMatElt
- RootSystem(C) : AlgMatElt -> RootSys
- RootSystem(M) : AlgMatElt -> RootSys
- RootSystem(M) : AlgMatElt -> RootSys
- RootSystem(D) : GrphDir -> RootSys
- RootSystem(W) : GrpMat -> RootDtm
- RootSystem(W) : GrpPermCox -> RootDtm
- RootSystem(N) : MonStgElt -> RootSys
- RootSystem(A, B) : Mtrx, Mtrx -> RootSys
- RootSystem(R) : RootDtm -> RootSys
- RootVertex(s) : GrphSpl -> GrphSplVert
- SetLibraryRoot(s) : MonStgElt ->
- SparseRootDatum(N) : MonStgElt -> RootDtmSprs
- SparseRootDatum(R) : RootDtm -> RootDtmSprs
- Sqrt(a) : FldNumElt -> FldNumElt
- Sqrt(a) : RngIntResElt -> RngIntResElt
- Sqrt(a) : RngOrdElt -> RngOrdElt
- SquareRoot(a) : FldACElt -> FldACElt
- SquareRoot(c) : FldComElt -> FldComElt
- SquareRoot(a) : FldFinElt -> FldFinElt
- SquareRoot(I) : RngFunOrdIdl -> RngFunOrdIdl
- SquareRoot(I) : RngOrdFracIdl -> RngOrdFracIdl
- SquareRoot(x) : RngPadElt -> RngPadElt
- SquareRoot(s) : RngPowLazElt -> RngPowLazElt
- SquareRoot(f) : RngSerElt -> RngSerElt
- StandardRootDatum(X, n) : MonStgElt, RngIntElt -> RootDtm
- StandardRootSystem(X, n) : MonStgElt, RngIntElt -> RootSys
- ToralRootDatum(n) : RngIntElt -> RootDtm
- ToralRootSystem(n) : RngIntElt -> RootSys
- TrivialRootDatum() : -> RootDat
- TrivialRootSystem() : -> RootSys
- TwistedRootDatum(R) : RootDtm -> RootDtm
- UntwistedRootDatum(R) : RootDtm -> RootDtm
- ZeroRootLattice(R) : RootDtm -> Lat
V2.28, 13 July 2023