q-Expansions

The following intrinsics give the q-expansion of a modular form (about the cusp ∞).

Note that q-expansions are printed by default only to precision O(q12). This may be adjusted using SetPrecision (see below), which should be used to control printing only; to control the amount of precision computed internally, instead use qExpansion or qExpansionBasis and specify the desired precision.

qExpansion(f) : ModFrmElt -> RngSerPowElt
qExpansion(f, prec) : ModFrmElt, RngIntElt -> RngSerPowElt
PowerSeries(f) : ModFrmElt -> RngSerPowElt
PowerSeries(f, prec) : ModFrmElt, RngIntElt -> RngSerPowElt
The q-expansion (at the cusp ∞) of the modular form (or half-integral weight form) f to absolute precision prec. This is an element of the power series ring over the base ring of the parent of f.
Coefficient(f, n) : ModFrmElt, RngIntElt -> RngElt
The nth coefficient of the q-expansion of the modular form f.
Precision(M) : ModFrm -> RngIntElt
SetPrecision(M, prec) : ModFrm, RngIntElt ->
When an element of the space M is printed, the q-expansion is displayed to this precision. The default value is 12.

Important note: This controls only printing. It does not control the precision used during calculations. For instance, the precision to which q-expansions are computed is controlled by the second argument in qExpansion and qExpansionBasis.

Example ModFrm_qExpansion (H141E7)

In this example, we compute the q-expansion of a modular form f∈M31(11)) in several ways.
> M := ModularForms(Gamma1(11),3); M;
Space of modular forms on Gamma_1(11) of weight 3 and dimension 15
over Integer Ring.
> f := M.1;
> f;
1 + O(q^8)
> qExpansion(f);
1 + O(q^8)
> Coefficient(f,16);  // f is a modular form, so has infinite precision
-5457936
> qExpansion(f,17);
1 + 763774*q^15 - 5457936*q^16 + O(q^17)
> PowerSeries(f,20);   // same as qExpansion(f,20)
1 + 763774*q^15 - 5457936*q^16 + 14709156*q^17 - 12391258*q^18 -
    21614340*q^19 + O(q^20)
The "big-oh" notation is supported via addition of a modular form and a power series.
> M<q> := Parent(f);
> Parent(q);
Power series ring in q over Integer Ring
> f + O(q^17);
1 + 763774*q^15 - 5457936*q^16 + O(q^17)
> 5*q - O(q^17) + f;
1 + 5*q + 763774*q^15 - 5457936*q^16 + O(q^17)
> 5*q + f;
1 + 5*q + O(q^8)
Default printing precision can be set using the command SetPrecision.
> SetPrecision(M,16);
> f;
1 + 763774*q^15 + O(q^16)

Example ModFrm_WeierstrassPoints (H141E8)

The PrecisionBound intrinsic is related to Weierstrass points on modular curves. Let N be a positive integer such that S = S20(N)) has dimension at least 2. Then the point ∞ is a Weierstrass point on X0(N) if and only if PrecisionBound(S : Exact := true)-1 ne Dimension(S).
> function InftyIsWP(N)
>    S := CuspidalSubspace(ModularForms(Gamma0(N),2));
>    assert Dimension(S) ge 2;
>    return (PrecisionBound(S : Exact := true)-1) ne Dimension(S);
> end function;
> [<N,InftyIsWP(N)> : N in [97..100]];
[ <97, false>, <98, true>, <99, false>, <100, true> ]
It is an open problem to give a simple characterization of the integers N such that ∞ is a Weierstrass point on X0(N), though Atkin and others have made significant progress on this problem (see, e.g., 1967 Annals paper [Atk67]). I verified that if N<3223 is square free, then ∞ is not a Weierstrass point on X0(N), which suggests a nice conjecture.
V2.28, 13 July 2023