- element-access
- element-arith
- element-Boolean
- element-construct
- element-construct-matrix
- element-construct-sc
- element-construction
- Element-Creation
- element-creation
- element-definition
- element-norm-trace
- Element-of-congruence-subgroup-in-terms-of-generators
- element-operations
- element-operations-diff-op-rings
- element-operators
- element-ops
- element-ops-orders
- element-ops-other
- element-ops-places
- element-order
- element-properties
- Element_Arithmetic
- element_properties
- Elementary
- Elementary Invariants (BRANDT MODULES)
- Elementary Operations (MULTILINEAR ALGEBRA)
- AbelianSubgroups(G) : GrpPC -> SeqEnum
- ElementaryAbelianGroup(GrpGPC, p, n) : Cat, RngIntElt, RngIntElt -> GrpGPC
- ElementaryAbelianNormalSubgroup(G) : GrpPerm -> GrpPerm
- ElementaryAbelianQuotient(G, p) : GrpAb, RngIntElt -> GrpAb, Map
- ElementaryAbelianQuotient(G, p) : GrpFP, RngIntElt -> GrpAb, Map
- ElementaryAbelianQuotient(G, p) : GrpGPC, RngIntElt -> GrpAb, Map
- ElementaryAbelianQuotient(G, p) : GrpMat, RngIntElt -> GrpAb, Map
- ElementaryAbelianQuotient(G, p) : GrpPC, RngIntElt -> GrpAb, Map
- ElementaryAbelianQuotient(G, p) : GrpPerm, RngIntElt -> GrpAb, Map
- ElementaryAbelianSeries(G) : GrpAb -> [ GrpAb ]
- ElementaryAbelianSeries(G) : GrpPC -> [GrpPC]
- ElementaryAbelianSeries(G: parameters) : GrpMat -> [ GrpMat ]
- ElementaryAbelianSeries(G: parameters) : GrpPerm -> [ GrpPerm ]
- ElementaryAbelianSeriesCanonical(G) : GrpMat -> [ GrpMat ]
- ElementaryAbelianSeriesCanonical(G) : GrpPC -> [GrpPC]
- ElementaryAbelianSeriesCanonical(G) : GrpPerm -> [ GrpPerm ]
- ElementaryAbelianSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
- ElementaryAbelianSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
- ElementaryDivisors(a) : AlgMatElt -> [RngElt]
- ElementaryDivisors(M, N) : ModDed, ModDed -> SeqEnum
- ElementaryDivisors(A) : Mtrx -> [RngElt]
- ElementaryDivisors(A) : MtrxSprs -> [RngElt]
- ElementaryPhiModule(S,d,h) : RngSerLaur, RngIntElt, RngIntElt -> PhiMod
- ElementarySymmetricPolynomial(P, k) : RngMPol, RngIntElt -> RngMPolElt
- ElementarySymmetricPolynomial(P, k) : RngMPol, RngIntElt -> RngMPolElt
- ElementarySymmetricPolynomial(R, i) : RngSLPol, RngIntElt -> RngSLPolElt
- ElementaryToHomogeneousMatrix(n): RngIntElt -> AlgMatElt
- ElementaryToMonomialMatrix(n): RngIntElt -> AlgMatElt
- ElementaryToPowerSumMatrix(n): RngIntElt -> AlgMatElt
- ElementaryToSchurMatrix(n): RngIntElt -> AlgMatElt
- ExtensionsOfElementaryAbelianGroup(p, d, G) : RngIntElt, RngIntElt, GrpPerm -> SeqEnum
- HasHomogeneousBasis(A): AlgSym -> BoolElt
- HomogeneousToElementaryMatrix(n): RngIntElt -> AlgMatElt
- IsElementaryAbelian(G) : GrpAb -> BoolElt
- IsElementaryAbelian(G) : GrpFin -> BoolElt
- IsElementaryAbelian(G) : GrpGPC -> BoolElt
- IsElementaryAbelian(G) : GrpMat -> BoolElt
- IsElementaryAbelian(G) : GrpPC -> BoolElt
- IsElementaryAbelian(G) : GrpPerm -> BoolElt
- MonomialToElementaryMatrix(n): RngIntElt -> AlgMatElt
- PowerSumToElementaryMatrix(n): RngIntElt -> AlgMatElt
- PowerSumToElementarySymmetric(I) : [] -> []
- SchurToElementaryMatrix(n): RngIntElt -> AlgMatElt
- SymmetricFunctionAlgebraElementary(R) : Rng -> AlgSym
V2.28, 13 July 2023