Structure Operations

Contents

Related Structures

The main structure related to an algebra of symmetric functions is its coefficient ring. An algebra of symmetric functions belongs to the Magma category AlgSym.

Category(L) : AlgSym -> Cat
Parent(L) : AlgSym -> Pow
PrimeRing(L) : AlgSym -> Rng
BaseRing(L) : AlgSym -> Rng
CoefficientRing(L) : AlgSym -> Rng
Return the coefficient ring of an algebra of symmetric functions L.

Ring Predicates and Booleans

The usual ring functions returning boolean values are available on algebras of symmetric functions.

IsCommutative(L) : AlgSym -> BoolElt
IsUnitary(L) : AlgSym -> BoolElt
IsFinite(L) : AlgSym -> BoolElt
IsOrdered(L) : AlgSym -> BoolElt
IsField(L) : AlgSym -> BoolElt
IsEuclideanDomain(L) : AlgSym -> BoolElt
IsPID(L) : AlgSym -> BoolElt
IsUFD(L) : AlgSym -> BoolElt
IsDivisionRing(L) : AlgSym -> BoolElt
IsEuclideanRing(L) : AlgSym -> BoolElt
IsDomain(L) : AlgSym -> BoolElt
IsPrincipalIdealRing(L) : AlgSym -> BoolElt
L eq M : AlgSym, AlgSym -> BoolElt
L ne M : AlgSym, AlgSym -> BoolElt
Return true if L and M are equal (respectively, not equal). Magma considers two algebras to be equal if they are over the same ring.

Predicates on Basis Types

HasSchurBasis(A): AlgSym -> BoolElt
Returns true if A is an algebra with a Schur basis.
HasHomogeneousBasis(A): AlgSym -> BoolElt
HasElementaryBasis(A): AlgSym -> BoolElt
HasPowerSumBasis(A): AlgSym -> BoolElt
HasMonomialBasis(A): AlgSym -> BoolElt
Returns true if A is an algebra with a homogeneous, elementary, power sum or monomial basis respectively.
V2.28, 13 July 2023