The main structure related to an algebra of symmetric functions is its
coefficient ring. An algebra of symmetric functions belongs to the
Magma category AlgSym.
Category(L) : AlgSym -> Cat
Parent(L) : AlgSym -> Pow
PrimeRing(L) : AlgSym -> Rng
CoefficientRing(L) : AlgSym -> Rng
Return the coefficient ring of an algebra of symmetric functions L.
The usual ring functions returning boolean values are available
on algebras of symmetric functions.
IsCommutative(L) : AlgSym -> BoolElt
IsUnitary(L) : AlgSym -> BoolElt
IsFinite(L) : AlgSym -> BoolElt
IsOrdered(L) : AlgSym -> BoolElt
IsField(L) : AlgSym -> BoolElt
IsEuclideanDomain(L) : AlgSym -> BoolElt
IsPID(L) : AlgSym -> BoolElt
IsUFD(L) : AlgSym -> BoolElt
IsDivisionRing(L) : AlgSym -> BoolElt
IsEuclideanRing(L) : AlgSym -> BoolElt
IsDomain(L) : AlgSym -> BoolElt
IsPrincipalIdealRing(L) : AlgSym -> BoolElt
L ne M : AlgSym, AlgSym -> BoolElt
Return true if L and M are equal (respectively, not equal).
Magma considers two algebras to be equal if they are over the same ring.
Returns true if A is an algebra with a Schur basis.
HasElementaryBasis(A): AlgSym -> BoolElt
HasPowerSumBasis(A): AlgSym -> BoolElt
HasMonomialBasis(A): AlgSym -> BoolElt
Returns true if A is an algebra with a
homogeneous, elementary, power sum or monomial basis respectively.
V2.28, 13 July 2023