- DegeneracyOperator
- Degenerate
- Degree
- AbsoluteDegree(A) : FldAb -> RngIntElt
- AbsoluteDegree(F) : FldFunG -> RngIntElt
- AbsoluteDegree(F) : FldNum -> RngIntElt
- AbsoluteDegree(F) : FldXPad -> RngIntElt
- AbsoluteDegree(O) : RngOrd -> RngIntElt
- AbsoluteDegree(L) : RngPad -> RngIntElt
- AbsoluteInertiaDegree(I) : RngOrdIdl -> RngIntElt
- AbsoluteInertiaDegree(L) : RngPad -> RngIntElt
- AbsoluteRamificationDegree(I) : RngOrdIdl -> RngIntElt
- AbsoluteRamificationDegree(L) : RngPad -> RngIntElt
- BlockDegree(D) : Dsgn -> RngIntElt
- BlockDegree(D, B) : Inc, IncBlk -> RngIntElt
- Degree(O) : AlgAssVOrd -> RngIntElt
- Degree(x) : AlgChtrElt -> RngIntElt
- Degree(A) : AlgGen -> RngIntElt
- Degree(a) : AlgGenElt -> RngIntElt
- Degree(L) : AlgLie -> RngIntElt
- Degree(a) : AlgLieElt -> RngIntElt
- Degree(R) : AlgMatV -> RngIntElt
- Degree(u, i) : AlgPBWElt, RngIntElt -> RngIntElt
- Degree(u, i) : AlgQUEElt, RngIntElt -> RngIntElt
- Degree(s) : AlgSymElt -> RngIntElt
- Degree(A) : ArtRep -> RngIntElt
- Degree(Z) : Clstr -> RngIntElt
- Degree(C) : CrvHyp -> RngIntElt
- Degree(D) : DB -> RngIntElt
- Degree(D) : DB -> RngIntElt
- Degree(K) : DBAtlasKeyMatRep -> RngIntElt
- Degree(K) : DBAtlasKeyPermRep -> RngIntElt
- Degree(D) : DivCrvElt -> RngIntElt
- Degree(D) : DivFunElt -> RngIntElt
- Degree(D) : DivNumElt -> RngElt
- Degree(D) : DivNumElt -> RngElt
- Degree(D) : DivRieSrfElt -> RngIntElt
- Degree(D) : DivSchElt -> FldRatElt
- Degree(A) : FldAb -> RngIntElt
- Degree(A) : FldAC -> RngIntElt
- Degree(A, v) : FldAC, RngIntElt -> RngIntElt
- Degree(F) : FldFin -> RngIntElt
- Degree(F, E) : FldFin, FldFin -> RngIntElt
- Degree(A) : FldFunAb -> RngIntElt
- Degree(a) : FldFunElt -> RngIntElt
- Degree(f) : FldFunFracSchElt[Crv] -> RngIntElt
- Degree(F) : FldFunG -> RngIntElt
- Degree(f) : FldFunRatElt -> RngIntElt
- Degree(F) : FldNum -> RngIntElt
- Degree(Q) : FldRat -> RngIntElt
- Degree(L, K) : FldXPad, FldXPad -> RngIntElt
- Degree(A) : GalRep -> RngIntElt
- Degree(C) : GRCrvS -> RngIntElt
- Degree(s) : GrphSpl -> RngIntElt
- Degree(u) : GrphVert -> RngIntElt
- Degree(u) : GrphVert -> RngIntElt
- Degree(u) : GrphVert -> RngIntElt
- Degree(u) : GrphVert -> RngIntElt
- Degree(G) : GrpMat -> RngIntElt
- Degree(g) : GrpMatElt -> RngIntElt
- Degree(G, Y) : GrpPerm, GSet -> RngIntElt
- Degree(G) : GrpPermElt -> RngIntElt
- Degree(g) : GrpPermElt -> RngIntElt
- Degree(g, Y) : GrpPermElt, GSet -> RngIntElt
- Degree(X) : GRSch -> FldRatElt
- Degree(H) : HypGeomData -> RngIntElt
- Degree(L) : Lat -> RngIntElt
- Degree(v) : LatElt -> RngIntElt
- Degree(L) : LatNF -> RngIntElt
- Degree(L) : LinearSys -> RngIntElt
- Degree(L) : LSer -> RngIntElt
- Degree(I) : Map -> RngIntElt
- Degree(f) : MapChn -> RngIntElt
- Degree(phi) : MapModAbVar -> RngIntElt
- Degree(m) : MapSch -> RngIntElt
- Degree(x) : ModAbVarElt -> RngIntElt
- Degree(M) : ModBrdt -> RngIntElt
- Degree(M) : ModDed -> RngIntElt
- Degree(model) : ModelG1 -> RngIntElt
- Degree(f) : ModFrmElt -> RngIntElt
- Degree(M) : ModMPol -> RngIntElt
- Degree(f) : ModMPolElt -> RngIntElt
- Degree(f) : ModMPolHom -> RngIntElt
- Degree(P) : ModSSElt -> RngElt
- Degree(V) : ModTupFld -> RngIntElt
- Degree(u) : ModTupFldElt -> RngIntElt
- Degree(D) : OMDiv -> RngIntElt
- Degree(I) : OMIdl -> RngIntElt
- Degree(P) : PlcCrvElt -> RngIntElt
- Degree(P) : PlcFunElt -> RngIntElt
- Degree(X) : RieSrf -> RngIntElt
- Degree(I) : RngFunOrdIdl -> RngIntElt
- Degree(R) : RngGal -> RngIntElt
- Degree(I) : RngInt -> RngIntElt
- Degree(L) : RngLocA -> RngIntElt
- Degree(L, R) : RngLocA, Rng -> RngIntElt
- Degree(f) : RngMPolElt -> RngIntElt
- Degree(f, i) : RngMPolElt, RngIntElt -> RngIntElt
- Degree(O) : RngOrd -> RngIntElt
- Degree(I) : RngOrdIdl -> RngIntElt
- Degree(L) : RngPad -> RngIntElt
- Degree(K, L) : RngPad, RngPad -> RngIntElt
- Degree(f) : RngSerElt -> RngIntElt
- Degree(p) : RngUPolElt -> RngIntElt
- Degree(F) : RngUPolTwstElt -> RngIntElt
- Degree(f) : RngUPolXPadElt -> RngIntElt
- Degree(C) : Sch -> RngIntElt
- Degree(X) : Sch -> RngIntElt
- Degree(f) : ShfHom -> RngIntElt
- Degree(P) : StkPtnOrd -> RngIntElt
- Degree(e) : SubFldLatElt -> RngIntElt
- Degree(P) : TorPol -> RngIntElt
- DegreeMap(M : parameters) : ModSym -> [ Tup ], Fld
- DegreeOfCharacterField(x) : AlgChtrElt -> RngIntElt
- DegreeOfExactConstantField(m) : DivFunElt -> RngIntElt
- DegreeOfExactConstantField(m, U) : DivFunElt, GrpAb -> RngIntElt
- DegreeOfExactConstantField(A) : FldFunAb -> RngIntElt
- DegreeOfFieldExtension(G) : GrpMat -> RngIntElt
- DegreeOnePrimeIdeals(O, B) : RngOrd, RngIntElt -> [ RngOrdIdl ]
- DegreeRange(D) : DB -> RngIntElt, RngIntElt
- DegreeReduction(G) : GrpPerm -> GrpPerm, Hom
- DegreeSequence(G) : Grph -> [ { GrphVert } ]
- DegreeSequence(G) : Grph -> [ { GrphVert } ]
- DegreeSequence(G) : GrphMultDir -> [ GrphVert ]
- DegreeSequence(G) : GrphMultUnd -> [ { GrphVert } ]
- DegreeTwoK3Surface(f) : RngMPolElt -> Srfc
- Dimension (S) : SpSpc -> RngIntElt
- DimensionOfExactConstantField(F) : FldFunG -> RngIntElt
- DistinctDegreeFactorization(f) : RngUPolElt -> [ <RngIntElt, RngUPolElt> ]
- DivisorOfDegreeOne(C) : Crv[FldFin] -> DivCrvElt
- DivisorOfDegreeOne(F) : FldFunG -> DivFunElt
- EqualDegreeFactorization(f, d, g) : RngUPolElt, RngIntElt, RngUPolElt -> [ RngUPolElt ]
- FunctionDegree(f) : MapSch -> RngIntElt
- GammaFactors(HS) : HodgeStruc -> SeqEnum
- GaussValuation (f) : SnuElement -> FldRatElt
- GuessAltsymDegree(G: parameters) : Grp -> BoolElt, MonStgElt, RngIntElt
- GuessAltsymDegree(G: parameters) : Grp -> BoolElt, MonStgElt, RngIntElt
- HasOddDegreeModel(C) : CrvHyp -> BoolElt, CrvHyp, MapIsoSch
- InDegree(u) : GrphVert -> RngIntElt
- InDegree(u) : GrphVert -> RngIntElt
- InertiaDegree(L, K) : FldXPad, FldXPad -> RngIntElt
- InertiaDegree(P) : PlcFunElt -> RngIntElt
- InertiaDegree(P) : PlcNumElt -> RngIntElt
- InertiaDegree(P) : PlcNumElt -> RngIntElt
- InertiaDegree(L) : RngLocA -> RngIntElt
- InertiaDegree(L) : RngPad -> RngIntElt
- InertiaDegree(K, L) : RngPad, RngPad -> RngIntElt
- InertiaDegree(E) : RngSerExt -> RngIntElt
- InvariantsOfDegree(R, d) : RngInvar, RngIntElt -> [ RngMPolElt ]
- InvariantsOfDegree(R, d) : RngInvar, RngIntElt -> [ RngMPolElt ]
- InvariantsOfDegree(R, d, k) : RngInvar, RngIntElt, RngIntElt -> [ RngMPolElt ]
- IsolGroupOfDegreeFieldSatisfying(d, p, f) : RngIntElt, RngIntElt, Any -> GrpMat
- IsolGroupOfDegreeSatisfying(d, f) : RngIntElt, Any -> GrpMat
- IsolGroupsOfDegreeFieldSatisfying(d, p, f) : RngIntElt, RngIntElt, Any -> SeqEnum
- IsolGroupsOfDegreeSatisfying(d, f) : RngIntElt, Any -> SeqEnum
- IsolNumberOfDegreeField(n, p) : RngIntElt, RngIntElt -> RngIntElt
- IsolProcessOfDegree(d) : . -> Process
- IsolProcessOfDegreeField(d, p) : ., . -> Process
- LeadingTotalDegree(f) : AlgFrElt -> RngIntElt
- LeadingTotalDegree(f) : RngMPolElt -> RngIntElt
- LeadingWeightedDegree(f) : RngMPolElt -> RngIntElt
- LocalDegree(P) : PlcNumElt -> RngIntElt
- LocalDegree(P) : PlcNumElt -> RngIntElt
- MaximumBettiDegree(M, i) : ModMPol, RngIntElt -> RngIntElt
- MaximumDegree(G) : GrphDir -> RngIntElt, GrphVert
- MaximumDegree(G) : GrphMultDir -> RngIntElt, GrphVert
- MaximumDegree(G) : GrphMultUnd -> RngIntElt, GrphVert
- MaximumDegree(G) : GrphUnd -> RngIntElt, GrphVert
- MaximumDegree(f) : SeqEnum -> RngIntElt
- MaximumInDegree(G) : GrphDir -> RngIntElt, GrphVert
- MaximumInDegree(G) : GrphMultDir -> RngIntElt, GrphVert
- MaximumOutDegree(G) : GrphDir -> RngIntElt, GrphVert
- MaximumOutDegree(G) : GrphMultDir -> RngIntElt, GrphVert
- MinimalDegreeModel(E) : CrvEll[FldFunRat] -> CrvEll, Map, Map
- MinimalDegreePermutationRepresentation(G: parameters) : Grp -> Hom(Grp), GrpPerm
- MinimumDegree(G) : GrphDir -> RngIntElt, GrphVert
- MinimumDegree(G) : GrphMultDir -> RngIntElt, GrphVert
- MinimumDegree(G) : GrphMultUnd -> RngIntElt, GrphVert
- MinimumDegree(G) : GrphUnd -> RngIntElt, GrphVert
- MinimumInDegree(G) : GrphDir -> RngIntElt, GrphVert
- MinimumInDegree(G) : GrphMultDir -> RngIntElt, GrphVert
- MinimumOutDegree(G) : GrphDir -> RngIntElt, GrphVert
- MinimumOutDegree(G) : GrphMultDir -> RngIntElt, GrphVert
- ModularDegree(E) : CrvEll -> RngIntElt
- ModularDegree(A) : ModAbVar -> RngIntElt
- ModularDegree(M) : ModSym -> RngIntElt
- MonomialsOfDegree(P, d) : RngMPolElt, RngIntElt -> {@ RngMPolElt @}
- MonomialsOfWeightedDegree(P, d) : RngMPolElt, RngIntElt -> {@ RngMPolElt @}
- MonomialsOfWeightedDegree(X, D) : Sch, [RngIntElt] -> SetIndx
- NumberOfPlacesOfDegreeOne(m, U) : DivFunElt, GrpAb -> RngIntElt
- NumberOfPlacesOfDegreeOne(A) : FldFunAb -> RngIntElt
- NumberOfPlacesOfDegreeOneECFBound(C) : Crv -> RngIntElt
- NumberOfPlacesOfDegreeOneECFBound(F) : FldFunG -> RngIntElt
- NumberOfPlacesOfDegreeOneOverExactConstantField(C) : Crv[FldFin] -> RngIntElt
- NumberOfPlacesOfDegreeOneOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
- NumberOfPlacesOfDegreeOneOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
- NumberOfPlacesOfDegreeOneOverExactConstantField(F) : FldFunG -> RngIntElt
- NumberOfPlacesOfDegreeOneOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
- NumberOfPlacesOfDegreeOneOverExactConstantFieldBound(F, m) : FldFun, RngIntElt -> RngIntElt
- NumberOfPlacesOfDegreeOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
- NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
- NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
- OMDivisorOfDegreeOne(F) : FldFun -> OMDiv
- Order(L) : RngDiffOpElt -> RngIntElt
- OutDegree(u) : GrphVert -> RngIntElt
- OutDegree(u) : GrphVert -> RngIntElt
- OverconvergentHeckeSeriesDegreeBound(p, N, k, m) : RngIntElt, RngIntElt, RngIntElt, RngIntElt -> RngIntElt
- PointDegree(D, p) : Inc, IncPt -> RngIntElt
- PrintTermsOfDegree(s, l, n) : RngPowLazElt, RngIntElt, RngIntElt ->
- RamificationDegree(L, K) : FldXPad, FldXPad -> RngIntElt
- RamificationDegree(I) : RngOrdIdl -> RngIntElt
- RamificationDegree(L) : RngPad -> RngIntElt
- RamificationDegree(K, L) : RngPad, RngPad -> RngIntElt
- RamificationIndex(P) : PlcFunElt -> RngIntElt
- RamificationIndex(I) : RngFunOrdIdl -> RngIntElt
- RamificationIndex(I, p) : RngOrdIdl, RngIntElt -> RngIntElt
- RamificationIndex(E) : RngSerExt -> RngIntElt
- RecogniseSmallDegree(G) : GrpMat -> BoolElt, GrpMat
- RestrictDegree(a, n): AlgSymElt, RngIntElt -> AlgSymElt
- SetAllInvariantsOfDegree(R, d, Q) : RngInvar, RngIntElt, [ RngMPolElt ] ->
- ShiftToDegreeZero(C) : ModCpx -> ModCpx
- SmallDegreeImage(G, h) : GrpMat, GrpMatElt -> GrpMatElt
- SmallDegreePreimage(G, g) : GrpMat, GrpMatElt -> GrpMatElt
- TotalDegree(f) : AlgFrElt -> RngIntElt
- TotalDegree(f) : FldFunRatElt -> RngIntElt
- TotalDegree(f) : RngMPolElt -> RngIntElt
- TwistingDegree(R) : RootDtm -> RngIntElt
- WeakDegree(f) : RngUPolXPadElt -> RngIntElt
- WeakOrder(L) : RngDiffOpElt -> RngIntElt
- WeightedDegree(f) : FldFunRatElt -> RngIntElt
- WeilDescentDegree(E,k) : FldFun, FldFin -> RngIntElt
- WeilDescentDegree(E, k, c) : FldFun, FldFin, FldFinElt -> RngIntElt
V2.28, 13 July 2023