- dimension
- dimension-formulas
- Dimensional
- DimensionByFormula
- DimensionCuspForms
- DimensionCuspFormsGamma0
- DimensionCuspFormsGamma1
- DimensionFormulas
- DimensionNewCuspFormsGamma0
- DimensionNewCuspFormsGamma1
- DimensionOfCentreOfEndomorphismRing
- DimensionOfEndomorphismRing
- DimensionOfExactConstantField
- DimensionOfFieldOfGeometricIrreducibility
- DimensionOfGlobalSections
- DimensionOfHomology
- DimensionOfKernelZ2
- DimensionOfSpanZ2
- Dimensions
- CohomologicalDimensions(M, n) : ModGrp, n -> RngIntElt
- CohomologicalDimensions(M, n) : ModGrp, n -> RngIntElt
- DimensionsEstimate(L, g) : AlgLieExtr, UserProgram -> SeqEnum, SetMulti
- DimensionsOfHomology(C) : ModCpx -> SeqEnum
- DimensionsOfInjectiveModules(B) : AlgBas -> SeqEnum
- DimensionsOfProjectiveModules(B) : AlgBas -> SeqEnum
- DimensionsOfTerms(C) : ModCpx -> SeqEnum
- InstancesForDimensions(L, g, D) : AlgLieExtr, UserProgram, SetEnum[RngIntElt] -> Assoc
- ProjectiveIndecomposableDimensions(G, K) : Grp, FldFin -> SeqEnum
- SimpleCohomologyDimensions(M) : ModAlg -> SeqEnum
- SimpleHomologyDimensions(M) : ModAlg -> SeqEnum
- DimensionsEstimate
- DimensionsOfHomology
- DimensionsOfInjectiveModules
- DimensionsOfProjectiveModules
- DimensionsOfTerms
- DIR
- Dir
- dir
- dirconstr
- Direct
- Direct Indecomposability (FINITE SOLUBLE GROUPS)
- R1 + R2 : RootDtm, RootDtm -> RootDtm
- R1 + R2 : RootSys, RootSys -> RootSys
- M1 + M2 : SpSpc, SpSpc -> SpSpc
- L + M : TorLat,TorLat -> TorLat,TorLatMap,TorLatMap,TorLatMap,TorLatMap
- DirectProduct(C, D) : Code, Code -> Code
- DirectProduct(C, D) : Code, Code -> Code
- DirectProduct(C, D) : Code, Code -> Code
- DirectProduct(G, H) : Grp, Grp -> Grp
- DirectProduct(G, H) : GrpFP, GrpFP -> GrpFP
- DirectProduct(G, H) : GrpGPC, GrpGPC -> GrpGPC, [Map], [Map]
- DirectProduct(G1, G2) : GrpLie, GrpLie -> GrpLie
- DirectProduct(G, H) : GrpMat, GrpMat -> GrpMat
- DirectProduct(G, H) : GrpPC, GrpPC -> GrpPC, [Map], [Map]
- DirectProduct(G, H) : GrpPerm, GrpPerm -> GrpPerm, [ Hom(Grp) ], [ Hom(Grp) ]
- DirectProduct(W1, W2) : GrpPermCox, GrpPermCox -> GrpPermCox
- DirectProduct(A,B) : Prj,Prj -> PrjProd,SeqEnum
- DirectProduct(A,B) : Sch,Sch -> Sch,SeqEnum
- DirectProduct(R, S) : SgpFP, SgpFP -> SgpFP
- DirectProduct(Q) : [ Grp ] -> Grp
- DirectProduct(Q) : [ GrpFP ] -> GrpFP
- DirectProduct(Q) : [ GrpMat ] -> GrpMat
- DirectProduct(Q) : [ GrpPerm ] -> GrpPerm, [ Hom(Grp) ], [ Hom(Grp) ]
- DirectProduct(Q) : [GrpPC] -> GrpPC, [ Map ], [ Map ]
- DirectSum(A, B) : AlgGen, AlgGen -> AlgGen
- DirectSum(L, M) : AlgLie, AlgLie -> AlgLie
- DirectSum(R, T) : AlgMat, AlgMat -> AlgMat
- DirectSum(a, b) : AlgMatElt, AlgMatElt -> AlgMatElt
- DirectSum(C, D) : Code, Code -> Code
- DirectSum(C, D) : Code, Code -> Code
- DirectSum(C, D) : Code, Code -> Code
- DirectSum(Q1, Q2) : CodeQuantum, CodeQuantum -> CodeQuantum
- DirectSum(A, B) : GrpAb, GrpAb -> GrpAb
- DirectSum(L, M) : Lat, Lat -> Lat
- DirectSum(A, B) : LatNF, LatNF -> LatNF
- DirectSum(A, B) : ModAbVar, ModAbVar -> ModAbVar, List, List
- DirectSum(U, V) : ModAlg, ModAlg -> SeqEnum
- DirectSum(ρ, τ) : ModAlg, ModAlg -> SeqEnum
- DirectSum(ρ, τ) : ModAlg, ModAlg -> SeqEnum
- DirectSum(C, D) : ModCpx, ModCpx -> ModCpx
- DirectSum(M1, M2) : ModDed, ModDed -> ModDed, Map, Map, Map, Map
- DirectSum(M, N) : ModMPol, ModMPol -> ModMPol, [ModMPolHom], [ModMPolHom]
- DirectSum(M, N) : ModRng, ModRng -> ModRng, Map, Map, Map, Map
- DirectSum(M, N) : ModRng, ModRng -> ModRng, Map, Map, Map, Map
- DirectSum(V,W) : ModTupRng, ModTupRng -> ModTupRng, Map, Map
- DirectSum(D1, D2) : PhiMod, PhiMod -> PhiMod
- DirectSum(Q): SeqEnum -> ModAlg, SeqEnum, SeqEnum
- DirectSum(S, T) : ShfCoh, ShfCoh -> ShfCoh
- DirectSum(Q) : [ ModRng ] -> ModRng, [ Map ], [ Map ]
- DirectSum(Q) : [ ModRng ] -> [ ModRng ], [ Map ], [ Map ]
- DirectSum(Q) : [Code] -> Code
- DirectSum(Q) : [Code] -> Code
- DirectSum(X) : [ModAbVar] -> ModAbVar, List, List
- DirectSum(S) : [ModMPol] -> ModMPol, [ModMPolHom], [ModMPolHom]
- DirectSumDecomposition(A) : AlgAssV -> [ AlgAssV ], [ AlgAssVElt ]
- DirectSumDecomposition(ρ) : Map[AlgLie, AlgMatLie] -> SeqEnum
- DirectSumDecomposition(ρ) : Map[GrpLie, GrpMat] -> SeqEnum
- DirectSumDecomposition(V) : ModAlg -> SeqEnum
- DirectSumDecomposition(M) : ModRng -> [ ModRng ]
- DirectSumDecomposition(R) : RootDtm -> [], RootDtm, Map
- DirectSumDecomposition(R) : RootSys -> []
- HasComplement(M, S) : ModGrp, ModGrp -> BoolElt, ModGrp
- IndecomposableSummands(L) : AlgLie -> [ AlgLie ]
- IsDirectSum(L) : TorLat -> BoolElt
- TraceOfFrobeniusDirect(E, p) : CrvEll, RngIntElt -> RngIntElt
V2.28, 13 July 2023