In this section we present some extended examples illustrating various features of the sheaf machinery.
The adjunction map on X is the map corresponding to the divisor KX + H, where KX is a canonical divisor and H is a hyperplane section, or, equivalently to the sheaf (K)X(1) where (K)X is the canonical sheaf. In our example, the adjunction map maps X to a smooth surface X1 of degree 13 in Prj8 blowing down the seven degree 1 exceptional curves to points and reducing the degrees of the others by 1. The adjunction map on X1 blows down the seven exceptional curves originally of degree 2 to points and maps X2 to an anticanonically embedded degree 5 Del Pezzo surface in Prj5.
We take a randomly generated surface from this family over a small finite field (F17) and illustrate this process by explicitly computing the adjunction maps and images X1 and X2. We show that the intersection pairings of the canonical divisor and hyperplane sections on X, X1, X2 are as expected and that X2 really is an anticanonically embedded Del Pezzo surface. We also expand the composition of the two divisor maps and show that the resulting map is indeed a birational map from X onto X2.
These surfaces X are defined by one degree 4 and ten degree 5 polynomials in Prj4. The embedding is quite a complex one and it is hard to construct one with defining polynomials which are at all sparse. This makes it fairly challenging for explicit computation and also means that an example takes up a lot of page space! An example with relatively small coefficients over Q can also be processed, though the total running time is a few minutes. Also, the resulting X2 tends to have very large coefficients. Here we get no coefficient blow-up and X2 is a much simpler looking surface than X.
> P<[x]> := ProjectiveSpace(GF(17),4); > X := Scheme(P, [ > 10*x[1]^4 + 13*x[1]^3*x[2] + 8*x[1]*x[2]^3 + 4*x[2]^4 + 6*x[1]^3*x[3] + > 15*x[1]^2*x[2]*x[3] + 14*x[2]^3*x[3] + x[1]^2*x[3]^2 + > 13*x[1]*x[2]*x[3]^2 + 3*x[2]^2*x[3]^2 + 9*x[1]*x[3]^3 + 2*x[2]*x[3]^3 + > 10*x[3]^4 + 15*x[1]^3*x[4] + 4*x[1]^2*x[2]*x[4] + 3*x[1]*x[2]^2*x[4] + > 7*x[2]^3*x[4] + 9*x[1]^2*x[3]*x[4] + 3*x[1]*x[2]*x[3]*x[4] + > 9*x[2]^2*x[3]*x[4] + 11*x[1]*x[3]^2*x[4] + 6*x[2]*x[3]^2*x[4] + > 15*x[3]^3*x[4] + x[1]^2*x[4]^2 + 4*x[1]*x[2]*x[4]^2 + 2*x[2]^2*x[4]^2 + > 12*x[1]*x[3]*x[4]^2 + 8*x[2]*x[3]*x[4]^2 + 9*x[3]^2*x[4]^2 + > 10*x[1]*x[4]^3 + 5*x[2]*x[4]^3 + 14*x[3]*x[4]^3 + 4*x[1]^3*x[5] + > 16*x[1]^2*x[2]*x[5] + 15*x[2]^3*x[5] + 13*x[1]^2*x[3]*x[5] + > 13*x[1]*x[2]*x[3]*x[5] + 10*x[2]^2*x[3]*x[5] + 15*x[1]*x[3]^2*x[5] + > 7*x[2]*x[3]^2*x[5] + 14*x[3]^3*x[5] + 11*x[1]^2*x[4]*x[5] + > 10*x[1]*x[2]*x[4]*x[5] + 4*x[2]^2*x[4]*x[5] + x[1]*x[3]*x[4]*x[5] + > 12*x[2]*x[3]*x[4]*x[5] + 8*x[3]^2*x[4]*x[5] + 5*x[1]*x[4]^2*x[5] + > 5*x[2]*x[4]^2*x[5] + 11*x[3]*x[4]^2*x[5] + 10*x[4]^3*x[5] + > 12*x[1]^2*x[5]^2 + 8*x[1]*x[2]*x[5]^2 + 16*x[2]^2*x[5]^2 + > 12*x[1]*x[3]*x[5]^2 + x[2]*x[3]*x[5]^2 + 14*x[3]^2*x[5]^2 + > 8*x[1]*x[4]*x[5]^2 + x[2]*x[4]*x[5]^2 + 3*x[3]*x[4]*x[5]^2 + > 5*x[4]^2*x[5]^2 + 11*x[1]*x[5]^3 + 13*x[2]*x[5]^3 + 5*x[3]*x[5]^3 + > 9*x[4]*x[5]^3 + 8*x[5]^4, > 9*x[1]^4*x[4] + 14*x[1]^3*x[2]*x[4] + 5*x[1]^2*x[2]^2*x[4] + > 2*x[1]*x[2]^3*x[4] + 2*x[1]^3*x[3]*x[4] + 7*x[1]^2*x[2]*x[3]*x[4] + > 5*x[1]*x[2]^2*x[3]*x[4] + 7*x[2]^3*x[3]*x[4] + 9*x[1]^2*x[3]^2*x[4] + > 12*x[1]*x[2]*x[3]^2*x[4] + 2*x[2]^2*x[3]^2*x[4] + 9*x[1]*x[3]^3*x[4] + > 2*x[2]*x[3]^3*x[4] + x[3]^4*x[4] + 3*x[1]^3*x[4]^2 + > 5*x[1]^2*x[2]*x[4]^2 + 7*x[1]*x[2]^2*x[4]^2 + 13*x[2]^3*x[4]^2 + > 11*x[1]^2*x[3]*x[4]^2 + 4*x[1]*x[2]*x[3]*x[4]^2 + 11*x[2]^2*x[3]*x[4]^2 > + 14*x[1]*x[3]^2*x[4]^2 + 16*x[2]*x[3]^2*x[4]^2 + 15*x[1]^2*x[4]^3 + > 11*x[1]*x[2]*x[4]^3 + 5*x[2]^2*x[4]^3 + 6*x[1]*x[3]*x[4]^3 + > 9*x[2]*x[3]*x[4]^3 + 16*x[3]^2*x[4]^3 + 9*x[2]*x[4]^4 + 15*x[3]*x[4]^4 + > 14*x[4]^5 + 2*x[1]^3*x[2]*x[5] + 6*x[1]^2*x[2]^2*x[5] + > 3*x[1]*x[2]^3*x[5] + 16*x[2]^4*x[5] + 15*x[1]^3*x[3]*x[5] + > 6*x[1]*x[2]^2*x[3]*x[5] + 10*x[2]^3*x[3]*x[5] + 14*x[1]^2*x[3]^2*x[5] + > 13*x[1]*x[2]*x[3]^2*x[5] + 4*x[2]^2*x[3]^2*x[5] + 16*x[1]*x[3]^3*x[5] + > 13*x[3]^4*x[5] + 14*x[1]^3*x[4]*x[5] + 9*x[1]^2*x[2]*x[4]*x[5] + > 16*x[1]*x[2]^2*x[4]*x[5] + 14*x[2]^3*x[4]*x[5] + > 6*x[1]*x[2]*x[3]*x[4]*x[5] + 6*x[2]^2*x[3]*x[4]*x[5] + > 3*x[1]*x[3]^2*x[4]*x[5] + 7*x[2]*x[3]^2*x[4]*x[5] + 7*x[3]^3*x[4]*x[5] + > 2*x[1]^2*x[4]^2*x[5] + 15*x[1]*x[2]*x[4]^2*x[5] + > 9*x[1]*x[3]*x[4]^2*x[5] + 14*x[3]^2*x[4]^2*x[5] + 14*x[1]*x[4]^3*x[5] + > 6*x[2]*x[4]^3*x[5] + 12*x[3]*x[4]^3*x[5] + 3*x[4]^4*x[5] + > 9*x[1]^3*x[5]^2 + 12*x[1]^2*x[2]*x[5]^2 + 16*x[1]*x[2]^2*x[5]^2 + > x[2]^3*x[5]^2 + 7*x[1]^2*x[3]*x[5]^2 + 5*x[1]*x[2]*x[3]*x[5]^2 + > 8*x[2]^2*x[3]*x[5]^2 + 2*x[1]*x[3]^2*x[5]^2 + 4*x[2]*x[3]^2*x[5]^2 + > 13*x[3]^3*x[5]^2 + 7*x[1]^2*x[4]*x[5]^2 + 6*x[2]^2*x[4]*x[5]^2 + > 16*x[1]*x[3]*x[4]*x[5]^2 + 15*x[2]*x[3]*x[4]*x[5]^2 + > 7*x[3]^2*x[4]*x[5]^2 + 6*x[1]*x[4]^2*x[5]^2 + 3*x[2]*x[4]^2*x[5]^2 + > 16*x[3]*x[4]^2*x[5]^2 + 15*x[4]^3*x[5]^2 + x[1]^2*x[5]^3 + > 13*x[1]*x[2]*x[5]^3 + 6*x[2]^2*x[5]^3 + 8*x[1]*x[3]*x[5]^3 + > x[2]*x[3]*x[5]^3 + 9*x[3]^2*x[5]^3 + 3*x[1]*x[4]*x[5]^3 + > 14*x[2]*x[4]*x[5]^3 + 8*x[3]*x[4]*x[5]^3 + 14*x[4]^2*x[5]^3 + > 16*x[1]*x[5]^4 + 2*x[2]*x[5]^4 + 7*x[3]*x[5]^4 + 7*x[4]*x[5]^4 + > 11*x[5]^5, > 13*x[1]^4*x[4] + 8*x[1]^3*x[2]*x[4] + 14*x[1]^2*x[2]^2*x[4] + > 3*x[1]*x[2]^3*x[4] + 11*x[2]^4*x[4] + 7*x[1]^3*x[3]*x[4] + > 3*x[1]^2*x[2]*x[3]*x[4] + 12*x[2]^3*x[3]*x[4] + 3*x[1]^2*x[3]^2*x[4] + > 13*x[1]*x[2]*x[3]^2*x[4] + 3*x[2]^2*x[3]^2*x[4] + 7*x[1]*x[3]^3*x[4] + > 2*x[2]*x[3]^3*x[4] + 7*x[3]^4*x[4] + 13*x[1]^3*x[4]^2 + > 6*x[1]^2*x[2]*x[4]^2 + 6*x[1]*x[2]^2*x[4]^2 + 6*x[2]^3*x[4]^2 + > 2*x[1]^2*x[3]*x[4]^2 + 15*x[1]*x[2]*x[3]*x[4]^2 + 14*x[2]^2*x[3]*x[4]^2 > + 3*x[1]*x[3]^2*x[4]^2 + 16*x[2]*x[3]^2*x[4]^2 + 3*x[3]^3*x[4]^2 + > 6*x[1]^2*x[4]^3 + 10*x[2]^2*x[4]^3 + 7*x[2]*x[3]*x[4]^3 + 13*x[1]*x[4]^4 > + 5*x[2]*x[4]^4 + 15*x[3]*x[4]^4 + 13*x[4]^5 + 2*x[1]^4*x[5] + > 6*x[1]^3*x[2]*x[5] + 12*x[1]^2*x[2]^2*x[5] + 12*x[1]*x[2]^3*x[5] + > 2*x[2]^4*x[5] + 5*x[1]^3*x[3]*x[5] + 12*x[1]^2*x[2]*x[3]*x[5] + > 7*x[1]*x[2]^2*x[3]*x[5] + 11*x[2]^3*x[3]*x[5] + 2*x[1]^2*x[3]^2*x[5] + > 3*x[1]*x[2]*x[3]^2*x[5] + 7*x[2]^2*x[3]^2*x[5] + 16*x[1]*x[3]^3*x[5] + > 3*x[2]*x[3]^3*x[5] + 13*x[3]^4*x[5] + 2*x[1]^2*x[2]*x[4]*x[5] + > 12*x[1]*x[2]^2*x[4]*x[5] + 2*x[2]^3*x[4]*x[5] + 10*x[1]^2*x[3]*x[4]*x[5] > + 9*x[1]*x[2]*x[3]*x[4]*x[5] + 6*x[2]^2*x[3]*x[4]*x[5] + > x[1]*x[3]^2*x[4]*x[5] + 6*x[2]*x[3]^2*x[4]*x[5] + 15*x[3]^3*x[4]*x[5] + > 2*x[1]^2*x[4]^2*x[5] + 14*x[1]*x[2]*x[4]^2*x[5] + > 13*x[1]*x[3]*x[4]^2*x[5] + 13*x[2]*x[3]*x[4]^2*x[5] + > 2*x[3]^2*x[4]^2*x[5] + 12*x[1]*x[4]^3*x[5] + 8*x[2]*x[4]^3*x[5] + > 8*x[3]*x[4]^3*x[5] + x[4]^4*x[5] + 3*x[1]^3*x[5]^2 + > 7*x[1]^2*x[2]*x[5]^2 + 4*x[1]^2*x[3]*x[5]^2 + 3*x[1]*x[2]*x[3]*x[5]^2 + > 9*x[2]^2*x[3]*x[5]^2 + 14*x[1]*x[3]^2*x[5]^2 + 13*x[2]*x[3]^2*x[5]^2 + > 15*x[3]^3*x[5]^2 + x[1]^2*x[4]*x[5]^2 + 14*x[1]*x[2]*x[4]*x[5]^2 + > 5*x[2]^2*x[4]*x[5]^2 + 10*x[1]*x[3]*x[4]*x[5]^2 + > 5*x[2]*x[3]*x[4]*x[5]^2 + 7*x[3]^2*x[4]*x[5]^2 + 13*x[1]*x[4]^2*x[5]^2 + > 2*x[2]*x[4]^2*x[5]^2 + 9*x[3]*x[4]^2*x[5]^2 + 3*x[4]^3*x[5]^2 + > 14*x[1]*x[2]*x[5]^3 + 12*x[2]^2*x[5]^3 + 6*x[1]*x[3]*x[5]^3 + > 16*x[2]*x[3]*x[5]^3 + 8*x[3]^2*x[5]^3 + 3*x[1]*x[4]*x[5]^3 + > 4*x[2]*x[4]*x[5]^3 + 11*x[3]*x[4]*x[5]^3 + 15*x[4]^2*x[5]^3 + > 14*x[1]*x[5]^4 + 13*x[2]*x[5]^4 + 4*x[3]*x[5]^4 + 4*x[4]*x[5]^4 + > 13*x[5]^5, > 15*x[1]^3*x[2]*x[3] + 11*x[1]^2*x[2]^2*x[3] + 14*x[1]*x[2]^3*x[3] + > x[2]^4*x[3] + 2*x[1]^3*x[3]^2 + 11*x[1]*x[2]^2*x[3]^2 + 7*x[2]^3*x[3]^2 > + 3*x[1]^2*x[3]^3 + 4*x[1]*x[2]*x[3]^3 + 13*x[2]^2*x[3]^3 + x[1]*x[3]^4 > + 4*x[3]^5 + 2*x[1]^4*x[4] + 11*x[1]^3*x[2]*x[4] + 13*x[1]^2*x[2]^2*x[4] > + 4*x[1]*x[2]^3*x[4] + 16*x[2]^4*x[4] + 5*x[1]^3*x[3]*x[4] + > 4*x[1]^2*x[2]*x[3]*x[4] + 10*x[1]*x[2]^2*x[3]*x[4] + 8*x[2]^3*x[3]*x[4] > + 5*x[1]^2*x[3]^2*x[4] + 14*x[1]*x[2]*x[3]^2*x[4] + 2*x[2]^2*x[3]^2*x[4] > + 15*x[1]*x[3]^3*x[4] + 13*x[3]^4*x[4] + 9*x[1]^3*x[4]^2 + > 3*x[1]^2*x[2]*x[4]^2 + 10*x[1]*x[2]^2*x[4]^2 + 12*x[2]^3*x[4]^2 + > 8*x[1]^2*x[3]*x[4]^2 + 14*x[1]*x[2]*x[3]*x[4]^2 + 3*x[2]^2*x[3]*x[4]^2 + > 2*x[1]*x[3]^2*x[4]^2 + 5*x[2]*x[3]^2*x[4]^2 + 10*x[3]^3*x[4]^2 + > 5*x[1]^2*x[4]^3 + x[1]*x[2]*x[4]^3 + 8*x[2]^2*x[4]^3 + > 7*x[1]*x[3]*x[4]^3 + 10*x[2]*x[3]*x[4]^3 + 13*x[3]^2*x[4]^3 + > 10*x[1]*x[4]^4 + 7*x[2]*x[4]^4 + 16*x[3]*x[4]^4 + 16*x[4]^5 + > 8*x[1]^3*x[3]*x[5] + 5*x[1]^2*x[2]*x[3]*x[5] + x[1]*x[2]^2*x[3]*x[5] + > 16*x[2]^3*x[3]*x[5] + 10*x[1]^2*x[3]^2*x[5] + 12*x[1]*x[2]*x[3]^2*x[5] + > 9*x[2]^2*x[3]^2*x[5] + 15*x[1]*x[3]^3*x[5] + 13*x[2]*x[3]^3*x[5] + > 4*x[3]^4*x[5] + 14*x[1]^3*x[4]*x[5] + x[1]^2*x[2]*x[4]*x[5] + > 10*x[1]*x[2]^2*x[4]*x[5] + 11*x[2]^3*x[4]*x[5] + 5*x[1]^2*x[3]*x[4]*x[5] > + 12*x[1]*x[2]*x[3]*x[4]*x[5] + 7*x[2]^2*x[3]*x[4]*x[5] + > 5*x[1]*x[3]^2*x[4]*x[5] + 3*x[3]^3*x[4]*x[5] + 2*x[1]^2*x[4]^2*x[5] + > 5*x[2]^2*x[4]^2*x[5] + 2*x[2]*x[3]*x[4]^2*x[5] + 8*x[3]^2*x[4]^2*x[5] + > x[1]*x[4]^3*x[5] + 5*x[2]*x[4]^3*x[5] + 3*x[3]*x[4]^3*x[5] + > 14*x[4]^4*x[5] + 16*x[1]^2*x[3]*x[5]^2 + 4*x[1]*x[2]*x[3]*x[5]^2 + > 11*x[2]^2*x[3]*x[5]^2 + 9*x[1]*x[3]^2*x[5]^2 + 16*x[2]*x[3]^2*x[5]^2 + > 8*x[3]^3*x[5]^2 + 8*x[1]^2*x[4]*x[5]^2 + 11*x[1]*x[2]*x[4]*x[5]^2 + > 3*x[2]^2*x[4]*x[5]^2 + 6*x[1]*x[3]*x[4]*x[5]^2 + 9*x[2]*x[3]*x[4]*x[5]^2 > + 5*x[3]^2*x[4]*x[5]^2 + 15*x[1]*x[4]^2*x[5]^2 + 2*x[2]*x[4]^2*x[5]^2 + > 8*x[3]*x[4]^2*x[5]^2 + 14*x[4]^3*x[5]^2 + x[1]*x[3]*x[5]^3 + > 15*x[2]*x[3]*x[5]^3 + 10*x[3]^2*x[5]^3 + 11*x[1]*x[4]*x[5]^3 + > 8*x[2]*x[4]*x[5]^3 + 15*x[3]*x[4]*x[5]^3 + 15*x[4]^2*x[5]^3 + > 6*x[3]*x[5]^4 + 3*x[4]*x[5]^4, > 9*x[1]^4*x[3] + 14*x[1]^3*x[2]*x[3] + 5*x[1]^2*x[2]^2*x[3] + > 2*x[1]*x[2]^3*x[3] + 2*x[1]^3*x[3]^2 + 7*x[1]^2*x[2]*x[3]^2 + > 5*x[1]*x[2]^2*x[3]^2 + 7*x[2]^3*x[3]^2 + 9*x[1]^2*x[3]^3 + > 12*x[1]*x[2]*x[3]^3 + 2*x[2]^2*x[3]^3 + 9*x[1]*x[3]^4 + 2*x[2]*x[3]^4 + > x[3]^5 + 3*x[1]^3*x[3]*x[4] + 5*x[1]^2*x[2]*x[3]*x[4] + > 7*x[1]*x[2]^2*x[3]*x[4] + 13*x[2]^3*x[3]*x[4] + 11*x[1]^2*x[3]^2*x[4] + > 4*x[1]*x[2]*x[3]^2*x[4] + 11*x[2]^2*x[3]^2*x[4] + 14*x[1]*x[3]^3*x[4] + > 16*x[2]*x[3]^3*x[4] + 15*x[1]^2*x[3]*x[4]^2 + 11*x[1]*x[2]*x[3]*x[4]^2 + > 5*x[2]^2*x[3]*x[4]^2 + 6*x[1]*x[3]^2*x[4]^2 + 9*x[2]*x[3]^2*x[4]^2 + > 16*x[3]^3*x[4]^2 + 9*x[2]*x[3]*x[4]^3 + 15*x[3]^2*x[4]^3 + > 14*x[3]*x[4]^4 + 2*x[1]^4*x[5] + 11*x[1]^3*x[2]*x[5] + > 13*x[1]^2*x[2]^2*x[5] + 4*x[1]*x[2]^3*x[5] + 16*x[2]^4*x[5] + > 2*x[1]^3*x[3]*x[5] + 13*x[1]^2*x[2]*x[3]*x[5] + 9*x[1]*x[2]^2*x[3]*x[5] > + 5*x[2]^3*x[3]*x[5] + 5*x[1]^2*x[3]^2*x[5] + 3*x[1]*x[2]*x[3]^2*x[5] + > 8*x[2]^2*x[3]^2*x[5] + x[1]*x[3]^3*x[5] + 7*x[2]*x[3]^3*x[5] + > 3*x[3]^4*x[5] + 9*x[1]^3*x[4]*x[5] + 3*x[1]^2*x[2]*x[4]*x[5] + > 10*x[1]*x[2]^2*x[4]*x[5] + 12*x[2]^3*x[4]*x[5] + > 10*x[1]^2*x[3]*x[4]*x[5] + 12*x[1]*x[2]*x[3]*x[4]*x[5] + > 3*x[2]^2*x[3]*x[4]*x[5] + 11*x[1]*x[3]^2*x[4]*x[5] + > 5*x[2]*x[3]^2*x[4]*x[5] + 7*x[3]^3*x[4]*x[5] + 5*x[1]^2*x[4]^2*x[5] + > x[1]*x[2]*x[4]^2*x[5] + 8*x[2]^2*x[4]^2*x[5] + 4*x[1]*x[3]*x[4]^2*x[5] + > 16*x[2]*x[3]*x[4]^2*x[5] + 8*x[3]^2*x[4]^2*x[5] + 10*x[1]*x[4]^3*x[5] + > 7*x[2]*x[4]^3*x[5] + 2*x[3]*x[4]^3*x[5] + 16*x[4]^4*x[5] + > 14*x[1]^3*x[5]^2 + x[1]^2*x[2]*x[5]^2 + 10*x[1]*x[2]^2*x[5]^2 + > 11*x[2]^3*x[5]^2 + 12*x[1]^2*x[3]*x[5]^2 + 12*x[1]*x[2]*x[3]*x[5]^2 + > 13*x[2]^2*x[3]*x[5]^2 + 4*x[1]*x[3]^2*x[5]^2 + 15*x[2]*x[3]^2*x[5]^2 + > 10*x[3]^3*x[5]^2 + 2*x[1]^2*x[4]*x[5]^2 + 5*x[2]^2*x[4]*x[5]^2 + > 6*x[1]*x[3]*x[4]*x[5]^2 + 5*x[2]*x[3]*x[4]*x[5]^2 + 7*x[3]^2*x[4]*x[5]^2 > + x[1]*x[4]^2*x[5]^2 + 5*x[2]*x[4]^2*x[5]^2 + x[3]*x[4]^2*x[5]^2 + > 14*x[4]^3*x[5]^2 + 8*x[1]^2*x[5]^3 + 11*x[1]*x[2]*x[5]^3 + > 3*x[2]^2*x[5]^3 + 9*x[1]*x[3]*x[5]^3 + 6*x[2]*x[3]*x[5]^3 + > 13*x[3]^2*x[5]^3 + 15*x[1]*x[4]*x[5]^3 + 2*x[2]*x[4]*x[5]^3 + > 5*x[3]*x[4]*x[5]^3 + 14*x[4]^2*x[5]^3 + 11*x[1]*x[5]^4 + 8*x[2]*x[5]^4 + > 5*x[3]*x[5]^4 + 15*x[4]*x[5]^4 + 3*x[5]^5, > 13*x[1]^4*x[3] + 8*x[1]^3*x[2]*x[3] + 14*x[1]^2*x[2]^2*x[3] + > 3*x[1]*x[2]^3*x[3] + 11*x[2]^4*x[3] + 7*x[1]^3*x[3]^2 + > 3*x[1]^2*x[2]*x[3]^2 + 12*x[2]^3*x[3]^2 + 3*x[1]^2*x[3]^3 + > 13*x[1]*x[2]*x[3]^3 + 3*x[2]^2*x[3]^3 + 7*x[1]*x[3]^4 + 2*x[2]*x[3]^4 + > 7*x[3]^5 + 13*x[1]^3*x[3]*x[4] + 6*x[1]^2*x[2]*x[3]*x[4] + > 6*x[1]*x[2]^2*x[3]*x[4] + 6*x[2]^3*x[3]*x[4] + 2*x[1]^2*x[3]^2*x[4] + > 15*x[1]*x[2]*x[3]^2*x[4] + 14*x[2]^2*x[3]^2*x[4] + 3*x[1]*x[3]^3*x[4] + > 16*x[2]*x[3]^3*x[4] + 3*x[3]^4*x[4] + 6*x[1]^2*x[3]*x[4]^2 + > 10*x[2]^2*x[3]*x[4]^2 + 7*x[2]*x[3]^2*x[4]^2 + 13*x[1]*x[3]*x[4]^3 + > 5*x[2]*x[3]*x[4]^3 + 15*x[3]^2*x[4]^3 + 13*x[3]*x[4]^4 + 15*x[1]^4*x[5] > + 15*x[1]^3*x[2]*x[5] + 2*x[1]^2*x[2]^2*x[5] + 16*x[1]*x[2]^3*x[5] + > 16*x[2]^4*x[5] + 14*x[1]^3*x[3]*x[5] + 4*x[1]^2*x[2]*x[3]*x[5] + > 10*x[1]*x[2]^2*x[3]*x[5] + 4*x[2]^3*x[3]*x[5] + 8*x[1]^2*x[3]^2*x[5] + > 5*x[1]*x[2]*x[3]^2*x[5] + 11*x[2]^2*x[3]^2*x[5] + 12*x[2]*x[3]^3*x[5] + > 2*x[3]^4*x[5] + 15*x[1]^2*x[2]*x[4]*x[5] + 6*x[2]^3*x[4]*x[5] + > 9*x[1]^2*x[3]*x[4]*x[5] + 9*x[1]*x[2]*x[3]*x[4]*x[5] + > 15*x[2]^2*x[3]*x[4]*x[5] + 14*x[1]*x[3]^2*x[4]*x[5] + > 13*x[2]*x[3]^2*x[4]*x[5] + 6*x[3]^3*x[4]*x[5] + 4*x[1]^2*x[4]^2*x[5] + > 7*x[1]*x[2]*x[4]^2*x[5] + 3*x[2]^2*x[4]^2*x[5] + 8*x[1]*x[3]*x[4]^2*x[5] > + 8*x[2]*x[3]*x[4]^2*x[5] + 3*x[3]^2*x[4]^2*x[5] + 15*x[1]*x[4]^3*x[5] + > 3*x[2]*x[4]^3*x[5] + 8*x[3]*x[4]^3*x[5] + 2*x[4]^4*x[5] + > 2*x[1]^3*x[5]^2 + 6*x[1]^2*x[2]*x[5]^2 + x[1]*x[2]^2*x[5]^2 + > 7*x[2]^3*x[5]^2 + 3*x[1]^2*x[3]*x[5]^2 + 16*x[1]*x[2]*x[3]*x[5]^2 + > 10*x[2]^2*x[3]*x[5]^2 + 10*x[1]*x[3]^2*x[5]^2 + 13*x[2]*x[3]^2*x[5]^2 + > 2*x[3]^3*x[5]^2 + 4*x[1]^2*x[4]*x[5]^2 + x[1]*x[2]*x[4]*x[5]^2 + > 9*x[2]^2*x[4]*x[5]^2 + 16*x[1]*x[3]*x[4]*x[5]^2 + > 8*x[2]*x[3]*x[4]*x[5]^2 + 11*x[1]*x[4]^2*x[5]^2 + 11*x[2]*x[4]^2*x[5]^2 > + 4*x[3]*x[4]^2*x[5]^2 + 10*x[4]^3*x[5]^2 + 10*x[1]^2*x[5]^3 + > 14*x[2]^2*x[5]^3 + 16*x[1]*x[3]*x[5]^3 + 13*x[2]*x[3]*x[5]^3 + > 15*x[3]^2*x[5]^3 + 16*x[1]*x[4]*x[5]^3 + 3*x[2]*x[4]*x[5]^3 + > 4*x[3]*x[4]*x[5]^3 + 2*x[4]^2*x[5]^3 + x[1]*x[5]^4 + 7*x[2]*x[5]^4 + > 7*x[4]*x[5]^4 + 2*x[5]^5, > 15*x[1]^4*x[3] + 11*x[1]^3*x[2]*x[3] + 5*x[1]^2*x[2]^2*x[3] + > 5*x[1]*x[2]^3*x[3] + 15*x[2]^4*x[3] + 12*x[1]^3*x[3]^2 + > 5*x[1]^2*x[2]*x[3]^2 + 10*x[1]*x[2]^2*x[3]^2 + 6*x[2]^3*x[3]^2 + > 15*x[1]^2*x[3]^3 + 14*x[1]*x[2]*x[3]^3 + 10*x[2]^2*x[3]^3 + x[1]*x[3]^4 > + 14*x[2]*x[3]^4 + 4*x[3]^5 + 15*x[1]^4*x[4] + 15*x[1]^3*x[2]*x[4] + > 2*x[1]^2*x[2]^2*x[4] + 16*x[1]*x[2]^3*x[4] + 16*x[2]^4*x[4] + > 14*x[1]^3*x[3]*x[4] + 2*x[1]^2*x[2]*x[3]*x[4] + 15*x[1]*x[2]^2*x[3]*x[4] > + 2*x[2]^3*x[3]*x[4] + 15*x[1]^2*x[3]^2*x[4] + 13*x[1]*x[2]*x[3]^2*x[4] > + 5*x[2]^2*x[3]^2*x[4] + 16*x[1]*x[3]^3*x[4] + 6*x[2]*x[3]^3*x[4] + > 4*x[3]^4*x[4] + 15*x[1]^2*x[2]*x[4]^2 + 6*x[2]^3*x[4]^2 + > 7*x[1]^2*x[3]*x[4]^2 + 12*x[1]*x[2]*x[3]*x[4]^2 + 15*x[2]^2*x[3]*x[4]^2 > + x[1]*x[3]^2*x[4]^2 + 4*x[3]^3*x[4]^2 + 4*x[1]^2*x[4]^3 + > 7*x[1]*x[2]*x[4]^3 + 3*x[2]^2*x[4]^3 + 13*x[1]*x[3]*x[4]^3 + > 12*x[3]^2*x[4]^3 + 15*x[1]*x[4]^4 + 3*x[2]*x[4]^4 + 7*x[3]*x[4]^4 + > 2*x[4]^5 + 14*x[1]^3*x[3]*x[5] + 10*x[1]^2*x[2]*x[3]*x[5] + > 13*x[1]^2*x[3]^2*x[5] + 14*x[1]*x[2]*x[3]^2*x[5] + 8*x[2]^2*x[3]^2*x[5] > + 3*x[1]*x[3]^3*x[5] + 4*x[2]*x[3]^3*x[5] + 2*x[3]^4*x[5] + > 2*x[1]^3*x[4]*x[5] + 6*x[1]^2*x[2]*x[4]*x[5] + x[1]*x[2]^2*x[4]*x[5] + > 7*x[2]^3*x[4]*x[5] + 2*x[1]^2*x[3]*x[4]*x[5] + > 2*x[1]*x[2]*x[3]*x[4]*x[5] + 5*x[2]^2*x[3]*x[4]*x[5] + > 8*x[2]*x[3]^2*x[4]*x[5] + 12*x[3]^3*x[4]*x[5] + 4*x[1]^2*x[4]^2*x[5] + > x[1]*x[2]*x[4]^2*x[5] + 9*x[2]^2*x[4]^2*x[5] + 3*x[1]*x[3]*x[4]^2*x[5] + > 6*x[2]*x[3]*x[4]^2*x[5] + 8*x[3]^2*x[4]^2*x[5] + 11*x[1]*x[4]^3*x[5] + > 11*x[2]*x[4]^3*x[5] + x[3]*x[4]^3*x[5] + 10*x[4]^4*x[5] + > 3*x[1]*x[2]*x[3]*x[5]^2 + 5*x[2]^2*x[3]*x[5]^2 + 11*x[1]*x[3]^2*x[5]^2 + > x[2]*x[3]^2*x[5]^2 + 9*x[3]^3*x[5]^2 + 10*x[1]^2*x[4]*x[5]^2 + > 14*x[2]^2*x[4]*x[5]^2 + 13*x[1]*x[3]*x[4]*x[5]^2 + > 9*x[2]*x[3]*x[4]*x[5]^2 + 4*x[3]^2*x[4]*x[5]^2 + 16*x[1]*x[4]^2*x[5]^2 + > 3*x[2]*x[4]^2*x[5]^2 + 6*x[3]*x[4]^2*x[5]^2 + 2*x[4]^3*x[5]^2 + > 3*x[1]*x[3]*x[5]^3 + 4*x[2]*x[3]*x[5]^3 + 13*x[3]^2*x[5]^3 + > x[1]*x[4]*x[5]^3 + 7*x[2]*x[4]*x[5]^3 + 13*x[3]*x[4]*x[5]^3 + > 7*x[4]^2*x[5]^3 + 4*x[3]*x[5]^4 + 2*x[4]*x[5]^4, > 15*x[1]^3*x[2]^2 + 11*x[1]^2*x[2]^3 + 14*x[1]*x[2]^4 + x[2]^5 + > 2*x[1]^3*x[2]*x[3] + 11*x[1]*x[2]^3*x[3] + 7*x[2]^4*x[3] + > 3*x[1]^2*x[2]*x[3]^2 + 4*x[1]*x[2]^2*x[3]^2 + 13*x[2]^3*x[3]^2 + > x[1]*x[2]*x[3]^3 + 4*x[2]*x[3]^4 + 16*x[1]^4*x[4] + 2*x[1]^3*x[2]*x[4] + > 7*x[1]^2*x[2]^2*x[4] + 4*x[1]*x[2]^3*x[4] + 4*x[2]^4*x[4] + > 9*x[1]^3*x[3]*x[4] + x[1]^2*x[2]*x[3]*x[4] + 9*x[1]*x[2]^2*x[3]*x[4] + > 4*x[2]^3*x[3]*x[4] + 7*x[1]^2*x[3]^2*x[4] + 5*x[1]*x[2]*x[3]^2*x[4] + > 11*x[2]^2*x[3]^2*x[4] + 15*x[1]*x[3]^3*x[4] + 15*x[2]*x[3]^3*x[4] + > x[3]^4*x[4] + 9*x[1]^2*x[2]*x[4]^2 + 16*x[1]*x[2]^2*x[4]^2 + > 9*x[2]^3*x[4]^2 + 3*x[1]^2*x[3]*x[4]^2 + 2*x[1]*x[2]*x[3]*x[4]^2 + > 14*x[2]^2*x[3]*x[4]^2 + 11*x[1]*x[3]^2*x[4]^2 + 16*x[2]*x[3]^2*x[4]^2 + > 4*x[3]^3*x[4]^2 + x[1]^2*x[4]^3 + 8*x[1]*x[2]*x[4]^3 + 14*x[2]^2*x[4]^3 > + 3*x[1]*x[3]*x[4]^3 + 16*x[2]*x[3]*x[4]^3 + 12*x[3]^2*x[4]^3 + > 7*x[1]*x[4]^4 + 5*x[2]*x[4]^4 + 4*x[3]*x[4]^4 + 2*x[4]^5 + > 8*x[1]^3*x[2]*x[5] + 5*x[1]^2*x[2]^2*x[5] + x[1]*x[2]^3*x[5] + > 16*x[2]^4*x[5] + 10*x[1]^2*x[2]*x[3]*x[5] + 12*x[1]*x[2]^2*x[3]*x[5] + > 9*x[2]^3*x[3]*x[5] + 15*x[1]*x[2]*x[3]^2*x[5] + 13*x[2]^2*x[3]^2*x[5] + > 4*x[2]*x[3]^3*x[5] + 8*x[1]^3*x[4]*x[5] + 16*x[1]^2*x[2]*x[4]*x[5] + > 11*x[1]*x[2]^2*x[4]*x[5] + 8*x[2]^3*x[4]*x[5] + 10*x[1]^2*x[3]*x[4]*x[5] > + 15*x[1]*x[2]*x[3]*x[4]*x[5] + 4*x[2]^2*x[3]*x[4]*x[5] + > 9*x[1]*x[3]^2*x[4]*x[5] + 16*x[2]*x[3]^2*x[4]*x[5] + 11*x[3]^3*x[4]*x[5] > + 4*x[1]^2*x[4]^2*x[5] + 6*x[1]*x[2]*x[4]^2*x[5] + 10*x[2]^2*x[4]^2*x[5] > + 11*x[1]*x[3]*x[4]^2*x[5] + 11*x[2]*x[3]*x[4]^2*x[5] + > 14*x[3]^2*x[4]^2*x[5] + 10*x[1]*x[4]^3*x[5] + 6*x[2]*x[4]^3*x[5] + > 5*x[3]*x[4]^3*x[5] + 4*x[4]^4*x[5] + 16*x[1]^2*x[2]*x[5]^2 + > 4*x[1]*x[2]^2*x[5]^2 + 11*x[2]^3*x[5]^2 + 9*x[1]*x[2]*x[3]*x[5]^2 + > 16*x[2]^2*x[3]*x[5]^2 + 8*x[2]*x[3]^2*x[5]^2 + 3*x[1]^2*x[4]*x[5]^2 + > 10*x[1]*x[2]*x[4]*x[5]^2 + 9*x[2]^2*x[4]*x[5]^2 + > 10*x[1]*x[3]*x[4]*x[5]^2 + 11*x[2]*x[3]*x[4]*x[5]^2 + > 11*x[3]^2*x[4]*x[5]^2 + 3*x[1]*x[4]^2*x[5]^2 + 14*x[2]*x[4]^2*x[5]^2 + > 7*x[3]*x[4]^2*x[5]^2 + 3*x[4]^3*x[5]^2 + x[1]*x[2]*x[5]^3 + > 15*x[2]^2*x[5]^3 + 10*x[2]*x[3]*x[5]^3 + x[1]*x[4]*x[5]^3 + > 2*x[2]*x[4]*x[5]^3 + 5*x[3]*x[4]*x[5]^3 + 6*x[4]^2*x[5]^3 + > 6*x[2]*x[5]^4 + 16*x[4]*x[5]^4, > 2*x[1]^4*x[2] + 2*x[1]^3*x[2]^2 + 15*x[1]^2*x[2]^3 + x[1]*x[2]^4 + x[2]^5 + > 16*x[1]^4*x[3] + 8*x[1]^3*x[2]*x[3] + 7*x[1]^2*x[2]^2*x[3] + > 10*x[1]*x[2]^3*x[3] + 10*x[2]^4*x[3] + 10*x[1]^3*x[3]^2 + > 11*x[1]^2*x[2]*x[3]^2 + 9*x[1]*x[2]^2*x[3]^2 + 10*x[2]^3*x[3]^2 + > 7*x[1]^2*x[3]^3 + 10*x[1]*x[2]*x[3]^3 + 4*x[2]^2*x[3]^3 + 13*x[1]*x[3]^4 > + 3*x[3]^5 + 2*x[1]^2*x[2]^2*x[4] + 11*x[2]^4*x[4] + 5*x[1]^3*x[3]*x[4] > + 15*x[1]^2*x[2]*x[3]*x[4] + 16*x[1]*x[2]^2*x[3]*x[4] + > 4*x[2]^3*x[3]*x[4] + 16*x[1]^2*x[3]^2*x[4] + 12*x[1]*x[2]*x[3]^2*x[4] + > 4*x[2]^2*x[3]^2*x[4] + 15*x[1]*x[3]^3*x[4] + 14*x[2]*x[3]^3*x[4] + > 5*x[3]^4*x[4] + 13*x[1]^2*x[2]*x[4]^2 + 10*x[1]*x[2]^2*x[4]^2 + > 14*x[2]^3*x[4]^2 + 10*x[1]^2*x[3]*x[4]^2 + 9*x[1]*x[2]*x[3]*x[4]^2 + > 2*x[2]^2*x[3]*x[4]^2 + x[1]*x[3]^2*x[4]^2 + 15*x[2]*x[3]^2*x[4]^2 + > 15*x[3]^3*x[4]^2 + 2*x[1]*x[2]*x[4]^3 + 14*x[2]^2*x[4]^3 + > 15*x[1]*x[3]*x[4]^3 + 6*x[2]*x[3]*x[4]^3 + 3*x[3]^2*x[4]^3 + > 15*x[2]*x[4]^4 + 13*x[3]*x[4]^4 + 15*x[1]^3*x[2]*x[5] + > 11*x[1]^2*x[2]^2*x[5] + 16*x[1]*x[2]^3*x[5] + 10*x[2]^4*x[5] + > 4*x[1]^3*x[3]*x[5] + 10*x[1]^2*x[2]*x[3]*x[5] + 4*x[2]^3*x[3]*x[5] + > 3*x[1]^2*x[3]^2*x[5] + 6*x[1]*x[2]*x[3]^2*x[5] + 15*x[2]^2*x[3]^2*x[5] + > 8*x[1]*x[3]^3*x[5] + 8*x[2]*x[3]^3*x[5] + x[3]^4*x[5] + > 13*x[1]^2*x[2]*x[4]*x[5] + 16*x[1]*x[2]^2*x[4]*x[5] + 8*x[2]^3*x[4]*x[5] > + 5*x[1]^2*x[3]*x[4]*x[5] + 16*x[1]*x[2]*x[3]*x[4]*x[5] + > x[2]^2*x[3]*x[4]*x[5] + 10*x[1]*x[3]^2*x[4]*x[5] + > 9*x[2]*x[3]^2*x[4]*x[5] + 12*x[3]^3*x[4]*x[5] + 6*x[1]*x[2]*x[4]^2*x[5] > + 6*x[2]^2*x[4]^2*x[5] + 12*x[1]*x[3]*x[4]^2*x[5] + > 16*x[2]*x[3]*x[4]^2*x[5] + 6*x[3]^2*x[4]^2*x[5] + 7*x[2]*x[4]^3*x[5] + > 15*x[3]*x[4]^3*x[5] + 7*x[1]^2*x[2]*x[5]^2 + 3*x[2]^3*x[5]^2 + > 3*x[1]^2*x[3]*x[5]^2 + 11*x[1]*x[2]*x[3]*x[5]^2 + x[2]^2*x[3]*x[5]^2 + > 12*x[1]*x[3]^2*x[5]^2 + 8*x[2]*x[3]^2*x[5]^2 + 4*x[3]^3*x[5]^2 + > x[1]*x[2]*x[4]*x[5]^2 + 14*x[2]^2*x[4]*x[5]^2 + 8*x[1]*x[3]*x[4]*x[5]^2 > + 13*x[2]*x[3]*x[4]*x[5]^2 + 4*x[3]^2*x[4]*x[5]^2 + > 15*x[2]*x[4]^2*x[5]^2 + 16*x[1]*x[2]*x[5]^3 + 10*x[2]^2*x[5]^3 + > 9*x[1]*x[3]*x[5]^3 + 14*x[2]*x[3]*x[5]^3 + 12*x[3]^2*x[5]^3 + > 10*x[2]*x[4]*x[5]^3 + x[3]*x[4]*x[5]^3 + 15*x[2]*x[5]^4 + 9*x[3]*x[5]^4, > 9*x[1]^4*x[2] + 14*x[1]^3*x[2]^2 + 5*x[1]^2*x[2]^3 + 2*x[1]*x[2]^4 + > 2*x[1]^3*x[2]*x[3] + 7*x[1]^2*x[2]^2*x[3] + 5*x[1]*x[2]^3*x[3] + > 7*x[2]^4*x[3] + 9*x[1]^2*x[2]*x[3]^2 + 12*x[1]*x[2]^2*x[3]^2 + > 2*x[2]^3*x[3]^2 + 9*x[1]*x[2]*x[3]^3 + 2*x[2]^2*x[3]^3 + x[2]*x[3]^4 + > 3*x[1]^3*x[2]*x[4] + 5*x[1]^2*x[2]^2*x[4] + 7*x[1]*x[2]^3*x[4] + > 13*x[2]^4*x[4] + 11*x[1]^2*x[2]*x[3]*x[4] + 4*x[1]*x[2]^2*x[3]*x[4] + > 11*x[2]^3*x[3]*x[4] + 14*x[1]*x[2]*x[3]^2*x[4] + 16*x[2]^2*x[3]^2*x[4] + > 15*x[1]^2*x[2]*x[4]^2 + 11*x[1]*x[2]^2*x[4]^2 + 5*x[2]^3*x[4]^2 + > 6*x[1]*x[2]*x[3]*x[4]^2 + 9*x[2]^2*x[3]*x[4]^2 + 16*x[2]*x[3]^2*x[4]^2 + > 9*x[2]^2*x[4]^3 + 15*x[2]*x[3]*x[4]^3 + 14*x[2]*x[4]^4 + 16*x[1]^4*x[5] > + 16*x[1]^3*x[2]*x[5] + 16*x[1]^2*x[2]^2*x[5] + 3*x[1]*x[2]^3*x[5] + > x[2]^4*x[5] + 9*x[1]^3*x[3]*x[5] + x[1]^2*x[2]*x[3]*x[5] + > 15*x[1]*x[2]^2*x[3]*x[5] + 10*x[2]^3*x[3]*x[5] + 7*x[1]^2*x[3]^2*x[5] + > 8*x[1]*x[2]*x[3]^2*x[5] + x[2]^2*x[3]^2*x[5] + 15*x[1]*x[3]^3*x[5] + > 5*x[2]*x[3]^3*x[5] + x[3]^4*x[5] + 11*x[1]^2*x[2]*x[4]*x[5] + > 14*x[1]*x[2]^2*x[4]*x[5] + 9*x[2]^3*x[4]*x[5] + 3*x[1]^2*x[3]*x[4]*x[5] > + 11*x[1]*x[2]*x[3]*x[4]*x[5] + 14*x[2]^2*x[3]*x[4]*x[5] + > 11*x[1]*x[3]^2*x[4]*x[5] + 13*x[2]*x[3]^2*x[4]*x[5] + 4*x[3]^3*x[4]*x[5] > + x[1]^2*x[4]^2*x[5] + 5*x[1]*x[2]*x[4]^2*x[5] + 3*x[2]^2*x[4]^2*x[5] + > 3*x[1]*x[3]*x[4]^2*x[5] + 11*x[2]*x[3]*x[4]^2*x[5] + > 12*x[3]^2*x[4]^2*x[5] + 7*x[1]*x[4]^3*x[5] + 8*x[2]*x[4]^3*x[5] + > 4*x[3]*x[4]^3*x[5] + 2*x[4]^4*x[5] + 8*x[1]^3*x[5]^2 + > 6*x[1]^2*x[2]*x[5]^2 + 11*x[1]*x[2]^2*x[5]^2 + 14*x[2]^3*x[5]^2 + > 10*x[1]^2*x[3]*x[5]^2 + 14*x[1]*x[2]*x[3]*x[5]^2 + 2*x[2]^2*x[3]*x[5]^2 > + 9*x[1]*x[3]^2*x[5]^2 + 6*x[2]*x[3]^2*x[5]^2 + 11*x[3]^3*x[5]^2 + > 4*x[1]^2*x[4]*x[5]^2 + 12*x[1]*x[2]*x[4]*x[5]^2 + 13*x[2]^2*x[4]*x[5]^2 > + 11*x[1]*x[3]*x[4]*x[5]^2 + 10*x[2]*x[3]*x[4]*x[5]^2 + > 14*x[3]^2*x[4]*x[5]^2 + 10*x[1]*x[4]^2*x[5]^2 + 4*x[2]*x[4]^2*x[5]^2 + > 5*x[3]*x[4]^2*x[5]^2 + 4*x[4]^3*x[5]^2 + 3*x[1]^2*x[5]^3 + > 13*x[1]*x[2]*x[5]^3 + 6*x[2]^2*x[5]^3 + 10*x[1]*x[3]*x[5]^3 + > 2*x[2]*x[3]*x[5]^3 + 11*x[3]^2*x[5]^3 + 3*x[1]*x[4]*x[5]^3 + > 11*x[2]*x[4]*x[5]^3 + 7*x[3]*x[4]*x[5]^3 + 3*x[4]^2*x[5]^3 + x[1]*x[5]^4 > + 9*x[2]*x[5]^4 + 5*x[3]*x[5]^4 + 6*x[4]*x[5]^4 + 16*x[5]^5, > 13*x[1]^4*x[2] + 8*x[1]^3*x[2]^2 + 14*x[1]^2*x[2]^3 + 3*x[1]*x[2]^4 + > 11*x[2]^5 + 7*x[1]^3*x[2]*x[3] + 3*x[1]^2*x[2]^2*x[3] + 12*x[2]^4*x[3] + > 3*x[1]^2*x[2]*x[3]^2 + 13*x[1]*x[2]^2*x[3]^2 + 3*x[2]^3*x[3]^2 + > 7*x[1]*x[2]*x[3]^3 + 2*x[2]^2*x[3]^3 + 7*x[2]*x[3]^4 + > 13*x[1]^3*x[2]*x[4] + 6*x[1]^2*x[2]^2*x[4] + 6*x[1]*x[2]^3*x[4] + > 6*x[2]^4*x[4] + 2*x[1]^2*x[2]*x[3]*x[4] + 15*x[1]*x[2]^2*x[3]*x[4] + > 14*x[2]^3*x[3]*x[4] + 3*x[1]*x[2]*x[3]^2*x[4] + 16*x[2]^2*x[3]^2*x[4] + > 3*x[2]*x[3]^3*x[4] + 6*x[1]^2*x[2]*x[4]^2 + 10*x[2]^3*x[4]^2 + > 7*x[2]^2*x[3]*x[4]^2 + 13*x[1]*x[2]*x[4]^3 + 5*x[2]^2*x[4]^3 + > 15*x[2]*x[3]*x[4]^3 + 13*x[2]*x[4]^4 + 16*x[1]^4*x[5] + > 5*x[1]^3*x[2]*x[5] + 11*x[1]^2*x[2]^2*x[5] + 3*x[1]*x[2]^3*x[5] + > 14*x[2]^4*x[5] + 10*x[1]^3*x[3]*x[5] + 2*x[1]^2*x[2]*x[3]*x[5] + > 14*x[1]*x[2]^2*x[3]*x[5] + 4*x[2]^3*x[3]*x[5] + 7*x[1]^2*x[3]^2*x[5] + > 10*x[1]*x[2]*x[3]^2*x[5] + 16*x[2]^2*x[3]^2*x[5] + 13*x[1]*x[3]^3*x[5] + > 2*x[2]*x[3]^3*x[5] + 3*x[3]^4*x[5] + 5*x[1]^3*x[4]*x[5] + > 7*x[1]^2*x[2]*x[4]*x[5] + 8*x[1]*x[2]^2*x[4]*x[5] + 2*x[2]^3*x[4]*x[5] + > 16*x[1]^2*x[3]*x[4]*x[5] + 9*x[1]*x[2]*x[3]*x[4]*x[5] + > 15*x[1]*x[3]^2*x[4]*x[5] + 3*x[2]*x[3]^2*x[4]*x[5] + 5*x[3]^3*x[4]*x[5] > + 10*x[1]^2*x[4]^2*x[5] + 10*x[2]^2*x[4]^2*x[5] + x[1]*x[3]*x[4]^2*x[5] > + x[2]*x[3]*x[4]^2*x[5] + 15*x[3]^2*x[4]^2*x[5] + 15*x[1]*x[4]^3*x[5] + > 14*x[2]*x[4]^3*x[5] + 3*x[3]*x[4]^3*x[5] + 13*x[4]^4*x[5] + > 4*x[1]^3*x[5]^2 + 13*x[1]^2*x[2]*x[5]^2 + 16*x[1]*x[2]^2*x[5]^2 + > 14*x[2]^3*x[5]^2 + 3*x[1]^2*x[3]*x[5]^2 + 16*x[1]*x[2]*x[3]*x[5]^2 + > 11*x[2]^2*x[3]*x[5]^2 + 8*x[1]*x[3]^2*x[5]^2 + 10*x[2]*x[3]^2*x[5]^2 + > x[3]^3*x[5]^2 + 5*x[1]^2*x[4]*x[5]^2 + 15*x[1]*x[2]*x[4]*x[5]^2 + > 9*x[2]^2*x[4]*x[5]^2 + 10*x[1]*x[3]*x[4]*x[5]^2 + > 9*x[2]*x[3]*x[4]*x[5]^2 + 12*x[3]^2*x[4]*x[5]^2 + 12*x[1]*x[4]^2*x[5]^2 > + 3*x[2]*x[4]^2*x[5]^2 + 6*x[3]*x[4]^2*x[5]^2 + 15*x[4]^3*x[5]^2 + > 3*x[1]^2*x[5]^3 + 10*x[1]*x[2]*x[5]^3 + 14*x[2]^2*x[5]^3 + > 12*x[1]*x[3]*x[5]^3 + 6*x[2]*x[3]*x[5]^3 + 4*x[3]^2*x[5]^3 + > 8*x[1]*x[4]*x[5]^3 + 4*x[3]*x[4]*x[5]^3 + 9*x[1]*x[5]^4 + 14*x[2]*x[5]^4 > + 12*x[3]*x[5]^4 + x[4]*x[5]^4 + 9*x[5]^5]);We check a few of the invariants of X.
> Dimension(X); 2 > IsNonsingular(X); true > ArithmeticGenus(X); 0 > // Get the sectional genus of X -- ie the genus of a hyperplane section. > ArithmeticGenus(X meet Scheme(P,P.1)); 9Now we construct the canonical sheaf and hyperplane sheaf and check intersection numbers.
> KX := CanonicalSheaf(X); > HX := StructureSheaf(X,1); // hyperplane sheaf > IntersectionPairing(HX,HX); // should be 10 = Degree(X) 10 > Degree(X); 10 > IntersectionPairing(KX,HX); // should be 6 6 > IntersectionPairing(KX,KX); // should be -9 : lots of exceptional curves! -9We now get the adjunction map as a divisor map, compute its image X1 and check some of the invariants of X1 as well as its corresponding intersection numbers.
> mp1,X1 := DivisorMap(Twist(KX,1)); > Dimension(Ambient(X1)); Dimension(X1); 8 2 > KX1 := CanonicalSheaf(X1); > HX1 := StructureSheaf(X1,1); // hyperplane sheaf of X1 > IntersectionPairing(HX1,HX1); // should be 13 = degree X1 13 > IntersectionPairing(KX1,HX1); // should be -3 -3 > IntersectionPairing(KX1,KX1); // should be -2 : fewer exceptional curves! -2We construct a second adjunction map to get X2 and check it as above.
> mp2,X2 := DivisorMap(Twist(KX1,1)); > Dimension(Ambient(X2)); Dimension(X2); 5 2 > KX2 := CanonicalSheaf(X2); > HX2 := StructureSheaf(X2,1); // hyperplane sheaf X2 > IntersectionPairing(HX2,HX2); // = degree X2 = 5 5 > IntersectionPairing(KX2,HX2); // should be -5 -5 > IntersectionPairing(KX2,KX2); // should be 5 5Now X2 should be a degree five Del Pezzo surface with (K)X simeq OX( - 1). This last isomorphism can be verified by checking that there is a degree -2 isomorphism from (K)X to OX(1)! The scheme X2 is much simpler than X: it is defined by five degree 2 polynomials.
> boo,d := IsIsomorphicWithTwist(KX2,HX2); > boo; d; true -2 > MinimalBasis(Ideal(X2)); Scheme over GF(17) defined by y[1]^2 + y[3]^2 + y[1]*y[4] + 15*y[2]*y[4] + 8*y[3]*y[4] + 6*y[4]^2 + 2*y[1]*y[5] + 12*y[2]*y[5] + y[3]*y[5] + 4*y[4]*y[5] + 4*y[5]^2 + 6*y[1]*y[6] + 10*y[2]*y[6] + 7*y[3]*y[6] + 7*y[5]*y[6] + 16*y[6]^2, y[1]*y[2] + 13*y[3]^2 + 3*y[1]*y[4] + 14*y[2]*y[4] + 13*y[3]*y[4] + 5*y[4]^2 + 14*y[1]*y[5] + 10*y[2]*y[5] + 2*y[3]*y[5] + 9*y[4]*y[5] + 6*y[5]^2 + 4*y[1]*y[6] + 13*y[2]*y[6] + 10*y[3]*y[6] + 3*y[4]*y[6] + y[5]*y[6] + 12*y[6]^2, y[2]^2 + 16*y[3]^2 + 15*y[1]*y[4] + 3*y[3]*y[4] + y[4]^2 + 10*y[1]*y[5] + 12*y[2]*y[5] + 10*y[3]*y[5] + 11*y[4]*y[5] + 9*y[5]^2 + 5*y[1]*y[6] + 3*y[2]*y[6] + 2*y[3]*y[6] + 15*y[4]*y[6] + 12*y[5]*y[6] + 5*y[6]^2, y[1]*y[3] + 13*y[3]^2 + y[1]*y[4] + 11*y[3]*y[4] + y[4]^2 + 16*y[1]*y[5] + y[2]*y[5] + 15*y[3]*y[5] + 3*y[4]*y[5] + 7*y[1]*y[6] + 3*y[2]*y[6] + 9*y[3]*y[6] + 10*y[4]*y[6] + 8*y[5]*y[6] + 6*y[6]^2, y[2]*y[3] + 16*y[3]^2 + 14*y[1]*y[4] + 3*y[2]*y[4] + y[3]*y[4] + y[4]^2 + 12*y[1]*y[5] + 9*y[3]*y[5] + 6*y[4]*y[5] + 2*y[5]^2 + 13*y[3]*y[6] + 9*y[4]*y[6] + 13*y[5]*y[6] + 12*y[6]^2Finally we get the composed map from X to X2 and check that it is (birationally) invertible.
> mp1r := Restriction(mp1,X,X1); > mp2r := Restriction(mp2,X1,X2); > mpc := Expand(mp1r*mp2r); > boo := IsInvertible(mpc); > boo; true
Our chosen variety is C, an elliptic curve that has been embedded as a degree 8 subvariety of P3 over Q. The curve C can be thought of as having been embedded in P7 by a complete linear system of degree 8 and then (isomorphically) projected down into P3. Such genus one curves embedded as degree 8 curves in P3 actually arise fairly naturally as models of homogeneous spaces arising in eight-descents.
We wish to recover the full embedding as a projective normal curve in P7. The coordinate ring of this is isomorphic to the normalisation of the coordinate ring of C in P3. From a sheaf-theoretic point of view, this is straightforward. The full embedding is the image of the divisor map corresponding to a hyperplane section of C or, equivalently, to the Serre twisting sheaf OX(1). The maximal module of OX(1) is isomorphic to the normalisation as an R-module, where R is the coordinate ring of C in P3, and it can be recovered as an algebra by taking the image of its associated divisor map. The global sections of OX(1) correspond to the full Riemann-Roch space of the divisor on the abstract curve given by a certain hyperplane divisor on C.
This example also illustrates another interesting point. In situations similar to these, the dimension of the full space of global sections of the Serre twisting sheaf can be computed from cohomology of the coordinate ring R. However, it is faster in this case to explicitly compute the full maximal module of OX(1), the zero-th graded part of this corresponding to the space of global sections and having the dimension of the zeroth cohomology group. In fact, though we only need to compute the dimension of this part, it is actually much quicker to compute the maximal module and compute its cohomology than to compute the cohomology of the original defining module, which is R twisted once. This probably reflects to some extent the fact that polynomial ring Groebner basis computations are much more highly tuned currently in Magma than the alternating algebra ones used in the cohomology computations. But the maximal module of a sheaf is generally a nicer object than a submodule with bits missing in the lower-graded pieces and has a smaller Castelnuevo-Mumford regularity etc. So, as we see in this example, it is often worth making sure that the maximal module of a sheaf is available before making cohomology calls.
> P<x,y,z,t> := ProjectiveSpace(Rationals(),3); > C := Curve(P,[ x^2*y^2 - 23/59*x*y^3 + 9/59*y^4 + 27/59*x^3*z - 23/59*x^2*y* > z - 6/59*x*y^2*z + 6/59*y^3*z - 10/59*x^2*z^2 + 5/59*x*y*z^2 - 3/59*y^2*z^2 + > 1/59*x*z^3 - 74/59*x^3*t + 115/59*x^2*y*t - 83/59*x*y^2*t + 3/59*y^3*t - > 105/59*x^2*z*t + 1/59*x*y*z*t - 2/59*y^2*z*t + 36/59*x*z^2*t + 4/59*y*z^2*t - > 3/59*z^3*t + 297/59*x^2*t^2 - 135/59*x*y*t^2 + 52/59*y^2*t^2 + 68/59*x*z*t^2 - > 11/59*y*z*t^2 - 18/59*z^2*t^2 - 315/59*x*t^3 + 42/59*y*t^3 + 96/59*t^4, > x^3*y - 833/354*x*y^3 - 11/236*y^4 - 1633/708*x^3*z - 4675/708*x^2*y*z - > 2633/708*x*y^2*z - 27/236*y^3*z + 805/354*x^2*z^2 + 223/59*x*y*z^2 - > 4/59*y^2*z^2 - 38/59*x*z^3 + 3359/708*x^3*t + 3811/354*x^2*y*t + > 1445/708*x*y^2*t + 303/118*y^3*t - 715/177*x^2*z*t - 527/177*x*y*z*t + > 211/118*y^2*z*t + 347/354*x*z^2*t - 195/236*y*z^2*t - 4/59*z^3*t - > 127/236*x^2*t^2 - 8237/708*x*y*t^2 + 65/708*y^2*t^2 + 1973/708*x*z*t^2 + > 123/59*y*z*t^2 - 24/59*z^2*t^2 - 1753/354*x*t^3 + 873/236*y*t^3 + 128/59*t^4, > x^4 + 269/354*x*y^3 + 35/236*y^4 + 1849/708*x^3*z + 4255/708*x^2*y*z - > 247/708*x*y^2*z + 43/236*y^3*z - 727/354*x^2*z^2 - 82/59*x*y*z^2 + > 2/59*y^2*z^2 + 19/59*x*z^3 - 5603/708*x^3*t - 3469/354*x^2*y*t - > 1637/708*x*y^2*t - 63/118*y^3*t + 328/177*x^2*z*t - 769/177*x*y*z*t - > 17/118*y^2*z*t + 151/354*x*z^2*t + 127/236*y*z^2*t + 2/59*z^3*t + > 1391/236*x^2*t^2 + 7865/708*x*y*t^2 + 823/708*y^2*t^2 - 1901/708*x*z*t^2 + > 86/59*y*z*t^2 + 12/59*z^2*t^2 + 493/354*x*t^3 - 761/236*y*t^3 - 64/59*t^4]);Next the hyperplane sheaf of C is constructed and the dimension of the space of global sections is confirmed to be 8 using DimensionOfGlobalSections (which also saturates the sheaf).
> OC1 := StructureSheaf(C,1); > DimensionOfGlobalSections(OC1); 8Finally, the projective normal embedding into P7 is created and we check that the image X is defined by 20 quadrics.
> norm_mp, X := DivisorMap(OC1); > ArithmeticGenus(X); 1 > B := MinimalBasis(Ideal(X)); > #B; 20 > [TotalDegree(f) : f in B]; [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]