Related Structures

In this section functions for creating other structures from a root system are briefly listed. The reader is referred to the appropriate chapters of the Handbook for more details.

RootDatum(R) : RootSys -> RootDtm
The (split) root datum corresponding to the root system R. The coefficients of the simple roots and coroots must be integral; otherwise an error is signalled. See Chapter ROOT DATA
CoxeterGroup(GrpFPCox, R) : Cat, RootSys -> RngIntElt
The Coxeter group with root system R. See Chapter COXETER GROUPS. The braid group and pure braid group can be computed from the Coxeter group using the commands in Section Braid Groups.
CoxeterGroup(R) : RootSys -> RngIntElt
CoxeterGroup(GrpPermCox, R) : Cat, RootSys -> RngIntElt
The permutation Coxeter group with root system R. See Chapter COXETER GROUPS.
ReflectionGroup(R) : RootSys -> GrpMat
CoxeterGroup(GrpMat, W) : Cat, RootSys -> GrpPermCox
The reflection group of the root system R. See Chapter REFLECTION GROUPS.
LieAlgebra(R, k) : RootSys, Rng -> AlgLie
The Lie algebra of the root system R over the base ring k. See Chapter LIE ALGEBRAS.
MatrixLieAlgebra(R, k) : RootSys -> GrpMat
The matrix Lie algebra of the root system R over the base ring k. See Chapter LIE ALGEBRAS.

Example RootSys_Related (H103E18)

> R := RootSystem("b3");
> SemisimpleType(LieAlgebra(R, Rationals()));
B3
> #CoxeterGroup(R);
48
V2.28, 13 July 2023