- aut
- aut-aff-jac
- aut-aff-perm
- aut_class
- aut_group
- autfree
- autGen
- autgp
- autgpsimgpss
- Auto
- auto
- auto-gal
- auto-isom
- auto-isom-fqt
- auto-maximals
- auto-p-group
- auto-p-group-soluble-group
- auto-print
- auto-soluble-group
- auto-startup
- AutoAction
- autocorr_example
- AutoCorrelation
- autogp-elts
- autogp-full
- autogp-order
- autogp-rep1
- autogp-rep2
- AutoL19
- Automatic
- automatic
- automatic-group-database
- automatic-groups
- automatic-simple
- AutomaticGroup
- AutomaticGroup-3
- AutomaticGroup-4
- AutomaticGroupIndices
- AutomaticGroupNames
- Automaton
- automorphic
- automorphic-representations
- Automorphism
- Automorphism Groups (FINITE SOLUBLE GROUPS)
- Frobenius Homomorphism (SYMMETRIC FUNCTIONS)
- AntiAutomorphismTau(U) : AlgQUE -> Map
- Automorphism(C, a) : CrvCon, AlgQuatElt -> MapIsoSch
- Automorphism(E, [r, s, t, u]) : CrvEll, SeqEnum -> Map
- Automorphism(C, S, T) : CrvRat, SetIndx, SetIndx -> MapIsoSch
- Automorphism(A,g) : GalRep,GrpPermElt -> Map
- Automorphism(m) : Map -> GrpLieAutoElt
- Automorphism(P,F) : Prj, SeqEnum -> MapSch
- Automorphism(A,p) : Sch, RngMPolElt -> IsoSch
- Automorphism(A,M) : Sch,Mtrx -> MapIsoSch
- Automorphism(P,M) : Sch,Mtrx -> MapSch
- Automorphism(X,F) : Sch,SeqEnum -> MapAutSch
- Automorphism(A,F) : Sch,SeqEnum -> MapSch
- AutomorphismGroup(A) : AlgBas -> GrpMat, SeqEnum, SeqEnum, SeqEnum
- AutomorphismGroup(C) : CodeAdd -> GrpPerm
- AutomorphismGroup(Q) : CodeQuantum -> GrpPerm
- AutomorphismGroup(C) : Crv -> GrpAutCrv
- AutomorphismGroup(C,auts) : Crv, SeqEnum -> GrpAutCrv
- AutomorphismGroup(E) : CrvEll -> Grp, Map
- AutomorphismGroup(C) : CrvHyp -> GrpPerm, Map, Map
- AutomorphismGroup(A) : FldAb -> GrpFP, [Map], Map
- AutomorphismGroup(F) : FldAlg -> GrpPerm, PowMap, Map
- AutomorphismGroup(K, F) : FldAlg, FldAlg -> GrpPerm, PowMap, Map
- AutomorphismGroup(K, k) : FldFin, FldFin -> GrpPerm, [Map], Map
- AutomorphismGroup(K, k) : FldFun, FldFunG -> GrpFP, Map
- AutomorphismGroup(K) : FldFunG -> GrpFP, Map
- AutomorphismGroup(K,f) : FldFunG, Map -> Grp, Map, SeqEnum
- AutomorphismGroup(Q) : FldRat -> GrpPerm, PowMapAut, Map
- AutomorphismGroup(G): Grp -> GrpAuto
- AutomorphismGroup(G, Q, I): Grp, SeqEnum[GrpElt], SeqEnum[SeqEnum[GrpElt]] -> GrpAuto
- AutomorphismGroup(G) : GrpAb -> GrpAuto
- AutomorphismGroup(F) : GrpFP -> GrpAuto
- AutomorphismGroup(G) : GrpLie -> GrpLieAuto
- AutomorphismGroup(G): GrpPC -> GrpAuto
- AutomorphismGroup(D) : Inc -> GrpPerm, GSet, GSet, PowMap, Map
- AutomorphismGroup(D) : IncGeom -> GrpPerm
- AutomorphismGroup(L) : Lat -> GrpMat
- AutomorphismGroup(L, F) : Lat, [ AlgMatElt ] -> GrpMat
- AutomorphismGroup(L) : LatNF -> GrpMat
- AutomorphismGroup(L, v) : LatNF, LatNFElt -> GrpMat, GrpMat
- AutomorphismGroup(M) : ModRng -> GrpMat
- AutomorphismGroup(G) : Mtrx[RngUPol] -> GrpMat, FldFin
- AutomorphismGroup(N) : NfdDck -> GrpPerm, Map
- AutomorphismGroup(C: parameters) : Code -> GrpPerm, PowMap, Map
- AutomorphismGroup(G : parameters) : Grph -> GrpPerm, GSet, GSet, PowMap, Map, Grph
- AutomorphismGroup(G: parameters) : GrpMat -> GrpAuto
- AutomorphismGroup(G: parameters) : GrpPerm -> GrpAuto
- AutomorphismGroup(M : parameters) : Mtrx -> GrpPerm
- AutomorphismGroup(G: parameters): GrpPC -> GrpAuto
- AutomorphismGroup(P) : Prj -> GrpMat,Map
- AutomorphismGroup(L) : RngLocA -> Grp, Map
- AutomorphismGroup(L) : RngPad -> GrpPerm, Map
- AutomorphismGroup(K, k) : RngPad, RngPad -> GrpPerm, Map
- AutomorphismGroup(P) : TorPol -> GrpMat
- AutomorphismGroup(F) : [ AlgMatElt ] -> GrpMat
- AutomorphismGroupMatchingIdempotents(A) : AlgBas -> AlgBas, ModMatFldElt
- AutomorphismGroupOfHyperellipticCurve(X) : CrvHyp -> GrpPerm, Map
- AutomorphismGroupOfHyperellipticCurve(X, Autos) : CrvHyp, List -> GrpPerm, Map
- AutomorphismGroupOfPlaneQuartic(X, Autos) : CrvPln , SeqEnum -> GrpPerm, Map
- AutomorphismGroupOfPlaneQuartic(X) : CrvPln -> GrpPerm, Map
- AutomorphismGroupOverCyclotomicExtension(CN,N,n): Crv, RngIntElt, RngIntElt -> GrpAutCrv
- AutomorphismGroupOverExtension(CN,N,n,u): Crv, RngIntElt, RngIntElt, RngElt -> GrpAutCrv
- AutomorphismGroupOverQ(CN,N): Crv, RngIntElt -> GrpAutCrv
- AutomorphismGroupSimpleGroup(type, d, q) : MonStgElt, RngIntElt, RngIntElt -> GrpPerm
- AutomorphismGroupSolubleGroup(G: parameters): GrpPC -> GrpAuto
- AutomorphismGroupStabilizer(C, k) : Code, RngIntElt -> GrpPerm, PowMap, Map
- AutomorphismGroupStabilizer(D, k) : Inc, RngIntElt -> GrpPerm, PowMap, Map
- AutomorphismOmega(U) : AlgQUE -> Map
- AutomorphismSubgroup(C) : Code -> GrpPerm, PowMap, Map
- AutomorphismSubgroup(D) : Inc -> GrpPerm, PowMap, Map
- AutomorphismTalpha(U, k) : AlgQUE, RngIntElt -> Map
- BarAutomorphism(U) : AlgQUE -> Map
- CollineationGroup(P) : Plane -> GrpPerm, GSet, GSet, PowMap, Map
- CyclotomicAutomorphismGroup(K) : FldCyc -> GrpAb, Map
- DecomposeAutomorphism(h) : GrpLieAutoElt -> GrpLieAutoElt, GrpLieAutoElt,GrpLieAutoElt, Rec
- DiagonalAutomorphism(L, v) : AlgLie, ModTupRngElt -> Map
- DiagonalAutomorphism(G, v) : GrpLie, ModTupRngElt -> Map
- DiagramAutomorphism(U, p) : AlgQUE, GrpPermElt -> Map
- DualityAutomorphism(G) : GrpLie -> GrpLieAutoElt
- ExtraAutomorphism(CN,N,u): Crv, RngIntElt, RngElt -> MapAutSch
- FieldAutomorphism(G, sigma) : GrpLie, Map -> Map
- FrobeniusAutomorphism(A, p) : FldAb, RngOrdIdl -> Map
- FrobeniusAutomorphism(L) : RngLocA -> Map
- GaloisGroup(K) : FldNum -> GrpPerm, [RngElt], GaloisData
- GeometricAutomorphismGroup(C) : Crv -> GrpPerm
- GeometricAutomorphismGroup(C) : CrvHyp : -> GrpPerm
- GeometricAutomorphismGroupFromShiodaInvariants(JI) : SeqEnum -> GrpPerm
- GeometricAutomorphismGroupGenus2Classification(F) : FldFin -> SeqEnum, SeqEnum
- GeometricAutomorphismGroupGenus3Classification(F) : FldFin -> SeqEnum,SeqEnum
- GradedAutomorphismGroup(A) : AlgBas -> GrpMat, SeqEnum[ModMatFldElt], SeqEnum[ModMatFldElt], SeqEnum[ModMatFldElt]
- GradedAutomorphismGroupMatchingIdempotents(A) : AlgBas -> GrpMat, SeqEnum, SecEnum
- GraphAutomorphism(L, p) : AlgLie, GrpPermElt -> Map
- GraphAutomorphism(G, p) : GrpLie, GrpPermElt -> Map
- HadamardAutomorphismGroup(H : parameters) : AlgMatElt -> AlgMatElt
- HermitianAutomorphismGroup(M) : Mtrx -> GrpMat
- IdentityAutomorphism(L) : AlgLie -> Map
- IdentityAutomorphism(G) : GrpLie -> GrpLieAutoElt
- IdentityAutomorphism(A) : Sch -> AutSch
- IdentityAutomorphism(X) : Sch -> MapAutSch
- IdentityMap(R) : RootDtm -> Map
- ImproveAutomorphismGroup(F, E) : FldAb, SeqEnum -> GrpFP, SeqEnum
- IncludeAutomorphism(~C, p) : Code, GrpPermElt ->
- InducedAutomorphism(r, h, c) : Map, Map, RngIntElt -> Map
- InnerAutomorphism(L, x) : AlgLie, GrpLieElt -> Map
- InnerAutomorphism(G, x) : GrpLie, GrpLieElt -> Map
- InnerAutomorphismGroup(A) : AlgBas -> GrpMat
- InnerAutomorphismGroup(L) : AlgLie -> GrpLie, Map
- InverseAutomorphismFreeGroup(F, Q) : GrpFP, SeqEnum -> GrpAutoElt
- IsAutomorphism(f) : MapSch -> BoolElt,AutSch
- IsSolubleAutomorphismGroupPGroup(A) : GrpAuto -> BoolElt
- KnownAutomorphismSubgroup(C) : Code -> GrpPerm
- NagataAutomorphism(A) : Aff -> MapSch
- OrderAutomorphismGroupAbelianPGroup (A) : SeqEnum -> RngIntElt
- PCGroupAutomorphismGroupPGroup(A) : GrpAuto -> BoolElt, Map, GrpPC
- PermutationAutomorphism(A, g) : Sch,GrpPermElt -> MapIsoSch
- ProbableAutomorphismGroup(A) : FldAb -> GrpFP, SeqEnum
- RandomAutomorphism(G) : GrpLie -> GrpLieAutoElt
- ReducedAutomorphismGroupOfHyperellipticCurve(X, Autos) : CrvHyp , List -> GrpPerm, Map
- ReducedAutomorphismGroupOfHyperellipticCurve(X) : CrvHyp -> GrpPerm, Map
- SrAutomorphism(CN,N,r,u): Crv, RngIntElt, RngIntElt, RngElt -> MapAutSch
- GrpLie_Automorphism (Example H110E19)
V2.28, 13 July 2023