- Introduction
- Automatic Groups
- Construction of an Automatic Group
- Modifying Limits
- Accessing Group Information
- Properties of an Automatic Group
- Constructing Words
- Operations on Elements
- u * v : GrpRWSElt, GrpRWSElt -> GrpRWSElt
- u / v : GrpRWSElt, GrpRWSElt -> GrpRWSElt
- u ^ n : GrpRWSElt, RngIntElt -> GrpRWSElt
- u ^ v : GrpRWSElt, GrpRWSElt -> GrpRWSElt
- Inverse(w) : GrpRWSElt -> GrpRWSElt
- (u, v) : GrpRWSElt, GrpRWSElt -> GrpRWSElt
- (u1, ..., ur) : GrpRWSElt, ..., GrpRWSElt -> GrpRWSElt
- u eq v : GrpRWSElt, GrpRWSElt -> BoolElt
- u ne v : GrpRWSElt, GrpRWSElt -> BoolElt
- IsId(w) : GrpRWSElt -> BoolElt
- # u : GrpRWSElt -> RngIntElt
- ElementToSequence(u) : GrpRWSElt -> [ RngIntElt ]
- Example GrpAtc_Arithmetic (H82E8)
- Set Operations
- Random(G, n) : GrpAtc, RngIntElt -> GrpAtcElt
- Random(G) : GrpAtc -> GrpAtcElt
- Representative(G) : GrpAtc -> GrpAtcElt
- Set(G, a, b) : GrpAtc, RngIntElt, RngIntElt -> SetEnum
- Set(G) : GrpAtc -> SetEnum
- Seq(G, a, b) : GrpAtc, RngIntElt, RngIntElt -> SeqEnum
- Seq(G) : GrpAtc -> SeqEnum
- Example GrpAtc_Set (H82E9)
- Homomorphisms
- The Growth Function
- Hyperbolic Groups
- Bibliography
V2.28, 13 July 2023