- Subdivision
- Subfield
- FixedField(A, U) : FldAb, GrpAb -> FldAb
- AbelianSubfield(A, U) : FldAb, GrpAb -> FldAb
- GaloisSubfieldTower(S, L) : GaloisData, [GrpPerm] -> FldNum, [Tup<RngSLPolElt, RngUPolElt, [GrpPermElt]>], UserProgram, UserProgram
- IsRealisableOverSubfield(M, F) : ModGrp, FldFin -> BoolElt, ModGrp
- IsSubfield(F, L) : FldAlg, FldAlg -> BoolElt, Map
- IsSubfield(K, L) : FldFun, FldFun -> BoolElt, Map
- IsSubfield(F, L) : FldNum, FldNum -> BoolElt, Map
- MaximalAbelianSubfield(K) : FldFunG -> FldFunAb
- MaximalAbelianSubfield(M) : RngOrd -> FldAb
- SubfieldCode(C, S) : Code, FldFin -> Code
- SubfieldLattice(K) : FldNum -> SubFldLat
- SubfieldRepresentationCode(C, K) : Code, FldFin -> Code
- SubfieldRepresentationParityCode(C, K) : Code, FldFin -> Code
- SubfieldSubcode(C, S) : Code, FldFin -> Code, Map
- SubfieldSubplane(P, F) : Plane, FldFin -> Plane, PlanePtSet, PlaneLnSet
- subfield
- subfield-lattice
- SubfieldCode
- SubfieldLattice
- SubfieldRepresentationCode
- SubfieldRepresentationParityCode
- Subfields
- subfields
- SubfieldSubcode
- SubfieldSubplane
- subfree
- Subgraph
- subgraph
- subgraph-graph
- subgraph-supergraph-quotient
- Subgroup
- TorsionSubgroup(H) : SetPtEll -> GrpAb, Map
- AbelianGroup(H) : SetPtEll -> GrpAb, Map
- AbelianNormalSubgroup(G) : GrpPerm -> GrpPerm
- AddSubgroupGenerator(~P, w) : GrpFPCosetEnumProc, GrpFPElt ->
- AutomorphismSubgroup(C) : Code -> GrpPerm, PowMap, Map
- AutomorphismSubgroup(D) : Inc -> GrpPerm, PowMap, Map
- Borel(C) : CosetGeom -> GrpPerm
- CentralizerOfNormalSubgroup(G, H) : GrpPerm, GrpPerm -> GrpPerm
- CollineationSubgroup(P) : Plane -> GrpPerm, GSet, GSet, PowMap, Map
- CommutatorSubgroup(G) : GrpAb -> GrpAb
- CommutatorSubgroup(H, K) : GrpAb, GrpAb -> GrpAb
- CommutatorSubgroup(G, H, K) : GrpFin, GrpFin, GrpFin -> GrpFin
- CommutatorSubgroup(G) : GrpFP -> GrpFP
- CommutatorSubgroup(G, H, K) : GrpGPC, GrpGPC, GrpGPC -> GrpGPC
- CommutatorSubgroup(G) : GrpMat -> GrpMat
- CommutatorSubgroup(G, H, K) : GrpMat, GrpMat, GrpMat -> GrpMat
- CommutatorSubgroup(G) : GrpPC -> GrpPC
- CommutatorSubgroup(G, H, K) : GrpPC, GrpPC, GrpPC -> GrpPC
- CommutatorSubgroup(G) : GrpPerm -> GrpPerm
- CommutatorSubgroup(G, H, K) : GrpPerm, GrpPerm, GrpPerm -> GrpPerm
- CongruenceSubgroup(N) : RngIntElt -> GrpPSL2
- CongruenceSubgroup(i,N) : RngIntElt, RngIntElt -> GrpPSL2
- CongruenceSubgroup([N,M,P]) : SeqEnum -> GrpPSL2
- CuspidalSubgroup(A) : ModAbVar -> ModAbVarSubGrp
- DerivedSubgroup(G) : GrpFin -> GrpFin
- DerivedSubgroup(G) : GrpGPC -> GrpGPC
- ElementaryAbelianNormalSubgroup(G) : GrpPerm -> GrpPerm
- FittingGroup(G) : GrpAb -> GrpAb
- FittingGroup(G) : GrpPerm -> GrpPerm
- FittingSubgroup(G) : GrpFin -> GrpFin
- FittingSubgroup(G) : GrpGPC -> GrpGPC
- [Future release] FittingSubgroup(G) : GrpMat -> GrpMat
- FittingSubgroup(G) : GrpPC -> GrpPC
- FrattiniSubgroup(G) : GrpAb -> GrpAb
- FrattiniSubgroup(G) : GrpFin -> GrpFin
- FrattiniSubgroup(G) : GrpMat -> GrpMat
- FrattiniSubgroup(G) : GrpPC -> GrpPC
- FrattiniSubgroup(G) : GrpPerm -> GrpPerm
- GaloisSubgroup(K, U) : FldNum, GrpPerm -> RngUPolElt, RngSLPolElt
- HallSubgroup(G, S) : GrpPC, { RngIntElt } -> GrpPC
- HilbertCharacterSubgroup(G) : GrpHecke -> GrpHecke
- IntersectionWithNormalSubgroup(G, N: parameters) : GrpPerm, GrpPerm -> GrpPerm
- IsParabolicSubgroup(W, H) : GrpPermCox, GrpPermCox -> BoolElt
- IsReflectionSubgroup(W, H) : GrpPermCox, GrpPermCox -> BoolElt
- IsStandardParabolicSubgroup(W, H) : GrpPermCox, GrpPermCox -> BoolElt
- IsSubgroup(H, K) : GrpFP, GrpFP -> BoolElt
- KnownAutomorphismSubgroup(C) : Code -> GrpPerm
- LMGCommutatorSubgroup(G, H) : GrpMat, GrpMat -> GrpMat
- LMGFittingSubgroup(G) : GrpMat -> GrpMat, GrpPC, Map
- LMGIsSubgroup(G, H) : GrpMat, GrpMat -> BoolElt
- MaximalNormalSubgroup(G) : GrpPerm -> GrpPerm
- MinimalNormalSubgroup(G) : GrpPC -> GrpPC
- MinimalNormalSubgroup(G, N) : GrpPC -> GrpPC
- NextSubgroup(~P) : GrpFPLixProc ->
- PrintSylowSubgroupStructure(G) : GrpLie ->
- RationalCuspidalSubgroup(A) : ModAbVar -> ModAbVarSubGrp
- ReflectionSubgroup(W, a) : GrpPermCox, () -> GrpPermCox
- ReflectionSubgroup(W, s) : GrpPermCox, [] -> GrpPermCox
- StandardParabolicSubgroup(W, J) : GrpPermCox, () -> GrpPermCox
- Subgroup(V) : GrpFPCos -> GrpFP
- Subgroup(P) : GrpFPCosetEnumProc -> GrpFP
- Subgroup(X, oQ : parameters) : [MapModAbVar], BoolElt -> HomModAbVar
- Subgroup(X) : [MapModAbVar] -> HomModAbVar
- Subgroup(X) : [ModAbVarElt] -> ModAbVarSubGrp
- SubgroupClasses(G) : GrpPC -> SeqEnum
- SubgroupClasses(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
- SubgroupClasses(G: parameters) : GrpMat -> [ rec< GrpMat, RngIntElt, RngIntElt, GrpFP> ]
- SubgroupClasses(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
- SubgroupFusion(G, H) : Grp, Grp -> SeqEnum[RngIntElt]
- SubgroupLattice(G) : GrpFin -> SubGrpLat
- SubgroupLattice(G) : GrpPC -> SubGrpLat
- SubgroupLattice(G) : GrpPerm -> SubGrpLat
- SubgroupOfTorus(M, x) : ModSym, ModSymElt -> RngIntElt
- SubgroupOfTorus(M, s) : ModSym, SeqEnum -> GrpAb
- SubgroupScheme(E,P) : CrvEll, Pt -> CrvEllSubgroup
- SubgroupScheme(p,N) : Pt, RngIntElt -> SchGrpEll, CrvEll
- SubgroupScheme(G, f) : SchGrpEll, RngUPolElt -> SchGrpEll
- SubsystemSubgroup(G, s) : GrpLie, SeqEnum -> RootDtm
- SubsystemSubgroup(G, a) : GrpLie, SetEnum -> RootDtm
- SylowSubgroup(G, p) : GrpFin, RngIntElt -> GrpFin
- SylowSubgroup(G, p) : GrpLie, RngIntElt -> List
- SylowSubgroup(G, p) : GrpMat, RngIntElt -> GrpMat
- SylowSubgroup(G, p) : GrpPC, RngIntElt -> GrpPC
- SylowSubgroup(G, p) : GrpPerm, RngIntElt -> GrpPerm
- SylowSubgroup(G, p : parameters) : GrpAb, RngIntElt -> GrpAb
- TorsionFreeSubgroup(A) : GrpAb -> GrpAb
- TorsionSubgroup(E) : CrvEll -> GrpAb, Map
- TorsionSubgroup(E) : CrvEll[FldFunG] -> GrpAb, Map
- TorsionSubgroup(A) : GrpAb -> GrpAb
- TorsionSubgroup(J) : JacHyp -> GrpAb, Map
- TorsionSubgroup(A) : ModAbVar -> BoolElt, ModAbVarSubGrp
- TorsionSubgroupScheme(G, n) : SchGrpEll, RngIntElt -> SchGrpEll
- TotallyUnitTrivialSubgroup(G) : GrpDrchNF -> GrpDrchNF
- TwoTorsionSubgroup(E) : CrvEll -> GrpAb, Map
- TwoTorsionSubgroup(J) : JacHyp -> GrpAb, Map
- TwoTorsionSubgroup(Q) : QuadBin -> GrpAb, Map
- UnitGroupAsSubgroup(O) : RngOrd -> GrpAb
- UnitTrivialSubgroup(G) : GrpDrchNF -> GrpDrchNF
- YoungSubgroup(L) : [RngIntElt] -> GrpPerm
- YoungSubgroupLadder(L) : [RngIntElt] -> [GrpPerm]
- ZeroSubgroup(A) : ModAbVar -> ModAbVarSubGrp
- nTorsionSubgroup(A, n) : ModAbVar, RngIntElt -> ModAbVarSubGrp
- nTorsionSubgroup(G, n) : ModAbVarSubGrp, RngIntElt -> ModAbVarSubGrp
- pElementaryAbelianNormalSubgroup(G, p) : GrpPerm, RngIntElt -> GrpPerm
- GrpGPC_Subgroup (Example H79E3)
- Grp_Subgroup (Example H63E6)
V2.28, 13 July 2023