For finite extensions L of Q(t), Fq(t) or extensions K of Fq(t) Magma can compute all fields between L and Q(t), Fq(t) or K. It should be noted that the computation of subfields does not depend on the Galois groups. The implementation over Q(t) uses the algorithm of Klüners [Klü02]. The implementation over Fq(t) and extensions thereof follows the newer ideas of Klüners and van Hoeij [vHKN11].
All algebraic function fields G with k(x) ⊂G ⊆F or K ⊂G ⊆F where K is an extension of Fq(x) and the coefficient field of F.
> k<x>:= FunctionField(Rationals()); > R<y>:= PolynomialRing(k); > f:= y^14 - 3234*y^12 + (8*x + 123480)*y^11 + (-696*x - 1152480)*y^10 + > (27672*x - 43563744)*y^9 + (-663544*x + 1795525424)*y^8 + (10660416*x - > 33905500608)*y^7 + (-120467088*x + 409661347536)*y^6 + (976911040*x - > 3428257977088)*y^5 + (-5684130144*x + 20264929189344)*y^4 + (23251514496*x - > 83582683562112)*y^3 + (-63672983360*x + 229899367865216)*y^2 + > (105037027200*x - 380160309247488)*y - 79060128000*x + 286518963720192; > F:= FunctionField(f); > Subfields(F); [ <Algebraic function field defined over Univariate rational function field over Rational Field Variables: x by y^14 - 3234*y^12 + (8*x + 123480)*y^11 + (-696*x - 1152480)*y^10 + (27672*x - 43563744)*y^9 + (-663544*x + 1795525424)*y^8 + (10660416*x - 33905500608)*y^7 + (-120467088*x + 409661347536)*y^6 + (976911040*x - 3428257977088)*y^5 + (-5684130144*x + 20264929189344)*y^4 + (23251514496*x - 83582683562112)*y^3 + (-63672983360*x + 229899367865216)*y^2 + (105037027200*x - 380160309247488)*y - 79060128000*x + 286518963720192, Mapping from: FldFun: F to FldFun: F>, <Algebraic function field defined over Univariate rational function field over Rational Field Variables: x by y^7 + 294*y^6 - 107016*y^5 + (2744*x + 576240)*y^4 + (-806736*x + 2469418896)*y^3 + (88740960*x - 312072913824)*y^2 + (-4329483200*x + 15606890921216)*y + 79060128000*x - 286518963720192, Mapping from: Algebraic function field defined over Univariate rational function field over Rational Field Variables: x by y^7 + 294*y^6 - 107016*y^5 + (2744*x + 576240)*y^4 + (-806736*x + 2469418896)*y^3 + (88740960*x - 312072913824)*y^2 + (-4329483200*x + 15606890921216)*y + 79060128000*x - 286518963720192 to FldFun: F> ]