- RootNumber
- RootNumber(A,infty) : ArtRep, Infty -> FldComElt
- EpsilonFactor(A,infty) : ArtRep, Infty -> FldComElt
- RootNumber(A) : ArtRep -> FldComElt
- RootNumber(A,p) : ArtRep, RngIntElt -> FldComElt
- RootNumber(E) : CrvEll -> RngIntElt
- RootNumber(E) : CrvEll -> RngIntElt
- RootNumber(E) : CrvEll -> RngIntElt
- RootNumber(E, p) : CrvEll, RngIntElt -> RngIntElt
- RootNumber(E, P) : CrvEll, RngOrdIdl -> RngIntElt
- RootNumber(K) : FldPad -> FldCycElt
- RootNumber(A) : GalRep -> FldComElt
- RootNumber(GR) : GrossenChar -> SeqEnum
- RootNumber(GR, p) : GrossenChar, RngIntElt -> FldComElt
- RootNumber(GR, P) : GrossenChar, RngOrgIdl -> FldComElt
- RootNumber(HS) : HodgeStruc -> FldCycElt
- RootNumbers
- RootOfUnity
- RootOperations
- RootPermutation
- RootPosition
- CorootPosition(G, v) : GrpLie, . -> (@@)
- RootPosition(G, v) : GrpLie, . -> (@@)
- RootPosition(W, v) : GrpMat, . -> (@@)
- RootPosition(W, v) : GrpPermCox, . -> (@@)
- RootPosition(R, v) : RootStr, . -> (@@)
- RootPosition(R, v) : RootSys, . -> (@@)
- rootrefl
- Roots
- AdditivePolynomialFromRoots(x, P) : RngElt, PlcFunElt -> RngUPolTwstElt
- AllRoots(a, n) : FldFinElt, RngIntElt -> SeqEnum
- AllSquareRoots(a) : RngIntResElt -> [ RngIntResElt ]
- GammaOrbitOnRoots(R,r) : RootDtm, RngIntElt -> GSetEnum
- GammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
- HasAllRootsOnUnitCircle(f) : RngUPolElt -> BoolElt
- NumberOfPositiveRoots(C) : AlgMatElt -> RngIntElt
- NumberOfPositiveRoots(W) : GrpFPCox -> RngIntElt
- NumberOfPositiveRoots(G) : GrpLie -> RngIntElt
- NumberOfPositiveRoots(W) : GrpMat -> RngIntElt
- NumberOfPositiveRoots(W) : GrpPermCox -> RngIntElt
- NumberOfPositiveRoots(N) : MonStgElt -> .
- NumberOfPositiveRoots(R) : RootStr -> RngIntElt
- NumberOfPositiveRoots(R) : RootSys -> RngIntElt
- PositiveRoots(G) : GrpLie -> (@@)
- PositiveRoots(W) : GrpMat -> (@@)
- PositiveRoots(W) : GrpPermCox -> (@@)
- PositiveRoots(R) : RootStr -> (@@)
- PositiveRoots(R) : RootSys -> (@@)
- PositiveRootsPerm(U) : AlgQUE -> SeqEnum
- QuarticNumberOfRealRoots(q) : RngUPolElt -> RngUPolElt
- RelativeRoots(R) : RootDtm -> SetIndx
- Roots(G) : GrpLie -> (@@)
- Roots(W) : GrpMat -> (@@)
- Roots(W) : GrpPermCox -> (@@)
- Roots(f) : RngUPolElt -> [ < FldACElt, RngIntElt> ]
- Roots(f) : RngUPolElt -> [ < FldFinElt, RngIntElt> ]
- Roots(p) : RngUPolElt -> [ < RngElt, RngIntElt> ]
- Roots(p, S) : RngUPolElt -> [ < RngElt, RngIntElt> ]
- Roots(p) : RngUPolElt -> [ <FldComElt, RngIntElt> ]
- Roots(f) : RngUPolElt -> [ <RngPadElt, RngIntElt> ]
- Roots(f) : RngUPolElt -> [<RngSerElt, RngIntElt>]
- Roots(f, D) : RngUPolElt, DivFunElt -> SeqEnum[ FldFunElt ]
- Roots(f, R) : RngUPolElt, FldXPad -> SeqEnum
- Roots(f) : RngUPolElt[RngLocA] -> SeqEnum
- Roots(R) : RootStr -> (@@)
- Roots(R) : RootSys -> (@@)
- RootsAndCoroots(G) : GrpMat -> [RngIntElt], [ModTupRngElt], [ModTupRngElt]
- RootsInSplittingField(f) : RngUPolElt[FldFin] -> [<RngUPolElt, RngIntElt>], FldFin
- RootsNonExact(p) : RngUPolElt[FldRe] -> [ FldComElt ], [ FldComElt ]
- SimpleRoots(G) : GrpLie -> Mtrx
- SimpleRoots(W) : GrpMat -> Mtrx
- SimpleRoots(W) : GrpPermCox -> Mtrx
- SimpleRoots(R) : RootStr -> Mtrx
- SimpleRoots(R) : RootSys -> Mtrx
- SmallRoots(p, N, X) : RngUPolElt, RngElt, RngElt -> [RngElt]
- ValuationsOfRoots(f) : RngUPolElt -> SeqEnum[<FldRatElt, RngIntElt>]
- ValuationsOfRoots(f) : RngUPolElt -> [ < RngIntElt, RngIntElt > ]
- ValuationsOfRoots(f, p) : RngUPolElt, RngIntElt -> [ < RngIntElt, RngIntElt > ]
- FldRe_Roots (Example H26E6)
V2.28, 13 July 2023