- QuaternionicMatrixGroupDatabase
- QuaternionicTranspose
- QuaternionOrder
- quaternions
- quatgps
- QUATo
- QUAToIntegralUEAMap
- Qubits
- Quit
- quit
- Quiver
- quiver
- QuiverAndRelations
- Quo
- quo
- Sub- and Superlattices and Quotients (LATTICES)
- Subalgebras and Quotient Algebras (BASIC ALGEBRAS)
- Subcomplexes and Quotient Complexes (CHAIN COMPLEXES)
- Submodules and Quotient Modules (MODULES OVER MULTIVARIATE RINGS)
- pAdicQuotientRing(L, k) : FldXPad, RngIntElt -> RngPadRes, Map
- quo< A | S> : AlgBas, ModTupFld -> AlgBas, Map
- quo<L | R> : AlgFPLie, [ AlgFPLieElt ] -> AlgLie, Map
- quo< F | J > : AlgFr, AlgFr -> AlgFP
- quo< A | L > : AlgGen, List -> AlgGen, Map
- quo< A | L > : AlgGrp, List -> AlgAss, Map
- quo<L | A> : AlgLie, List -> AlgLie, Map
- quo< GrpGPC : F | R : parameters > : GrpFP, List(GrpFPRel) -> GrpGPC, Map
- quo< GrpPC : F | R : parameters > : GrpFP, List(GrpFPRel) -> GrpPC, Map
- quo<G | L> : Grp, List -> Grp, Map
- quo<F | R> : GrpAb, List -> GrpAb, Hom(GrpAb)
- quo< F | R > : GrpFP, List -> GrpFP, Hom(Grp)
- quo<G | L> : GrpGPC, List -> GrpGPC, Map
- quo< G | P > : Grph, { { GrphVert } } -> Grph, GrphVertSet, GrphEdgeSet
- quo<G | L> : GrpMat, List -> GrpPerm, Map
- quo<G | L> : GrpPC, List -> GrpPC, Map
- quo<G | L> : GrpPerm, List -> GrpPerm, Map
- quo< L | S > : Lat, List -> GrpAb, Map
- quo< M | S > : ModAlg, [ModAlgElt] -> ModAlg
- quo< C | D > : ModCpx, ModCpx -> ModCpx
- quo<M | S> : ModDed, ModDed -> ModDed, Map
- quo<M | L> : ModMPol, List -> ModMPol
- quo<M | L> : ModRng, List -> ModRng
- quo<V | L> : ModTupFld, List -> ModTupFld, Map
- quo<M | L> : ModTupRng, List -> ModTupRng
- quo< FldNum : R | f > : RngUPol, RngUPolElt -> FldNum
- quo< R | ar, ..., ar > : Rng, RngElt, ..., RngElt -> Rng
- quo< O | I > : RngFunOrd, RngFunOrdIdl -> RngFunOrdRes
- quo< O | p > : RngFunOrd, RngUPolElt -> RngFunOrdRes
- quo<Z | I> : RngInt, RngInt -> RngIntRes
- quo<Z | m> : RngInt, RngIntElt -> RngIntRes
- quo< P | J > : RngMPol, RngMPol -> RngMPolRes
- quo< O | m > : RngOrd, RngIntElt -> RngOrdRes
- quo< O | I > : RngOrd, RngOrdIdl -> RngOrdRes
- quo<L | x> : RngPad, RngPadElt -> .
- quo< R | I > : RngUPol, RngUPol -> RngUPolRes
- quo< F | relations > : SgpFP, Rel, ..., Rel -> SgpFP
- QuoAlgFPLie
- QuoConstructor
- quos
- Quotient
- p-Quotient (FINITELY PRESENTED GROUPS)
- p-Quotient (INTRODUCTION TO FP-GROUPS [FINITELY-PRESENTED GROUPS])
- AbelianNormalQuotient(G, H) : GrpPerm, GrpPerm -> GrpPerm, Hom(GrpPerm), GrpPerm
- AbelianQuotient(G) : Grp -> GrpAb, Hom
- AbelianQuotient(G) : GrpFP -> GrpAb, Map
- AbelianQuotient(G) : GrpGPC -> GrpAb, Map
- AbelianQuotient(G) : GrpMat -> GrpAb, Map
- AbelianQuotient(G) : GrpPC -> GrpAb, Map
- AbelianQuotient(G) : GrpPerm -> GrpAb, Map
- AbelianQuotientInvariants(G) : GrpFP -> [ RngIntElt ]
- AbelianQuotientInvariants(H) : GrpFP -> [ RngIntElt ]
- AbelianQuotientInvariants(G, n) : GrpFP, RngIntElt -> [ RngIntElt ]
- AbelianQuotientInvariants(H, n) : GrpFP, RngIntElt -> [ RngIntElt ]
- AbelianQuotientInvariants(G) : GrpGPC -> [ RngIntElt ]
- AbelianQuotientInvariants(G) : GrpPC -> SeqEnum
- AbsoluteAffineAlgebra(A) : FldAC -> RngUPolRes
- AffineAlgebra(A) : FldAC -> RngMPolRes
- CohomologyRingQuotient(CR) : Rec -> Rng,Map
- ColonIdeal(I, J) : RngMPol, RngMPol -> RngMPol
- ColonIdeal(I, f) : RngMPol, RngMPolElt -> RngMPol, RngIntElt
- ColonIdeal(I, J) : RngOrdFracIdl, RngOrdFracIdl -> RngOrdFracIdl
- ConeQuotientByLinearSubspace(C) : TorCon -> TorCon,Map,Map
- CurveQuotient(G): GrpAutCrv -> Crv, MapSch
- DualQuotient(L) : Lat -> GrpAb, Lat, Map
- ElementaryAbelianQuotient(G, p) : GrpAb, RngIntElt -> GrpAb, Map
- ElementaryAbelianQuotient(G, p) : GrpFP, RngIntElt -> GrpAb, Map
- ElementaryAbelianQuotient(G, p) : GrpGPC, RngIntElt -> GrpAb, Map
- ElementaryAbelianQuotient(G, p) : GrpMat, RngIntElt -> GrpAb, Map
- ElementaryAbelianQuotient(G, p) : GrpPC, RngIntElt -> GrpAb, Map
- ElementaryAbelianQuotient(G, p) : GrpPerm, RngIntElt -> GrpAb, Map
- ExactQuotient(n, d) : RngIntElt, RngIntElt -> RngIntElt
- ExactQuotient(f, g) : RngUPolElt, RngUPolElt -> RngUPolElt
- FrattiniQuotientRank(G) : GrpPC -> GrpPC
- FreeAbelianQuotient(G) : GrpAb -> GrpAb, Map
- FreeAbelianQuotient(G) : GrpGPC -> GrpAb, Map
- FundamentalQuotient(Q) : QuadBin -> Map
- GModuleOfQuotient(M, H) : ModGrp, Grp -> ModGrp
- GaloisQuotient(K, Q) : FldNum, GrpPerm -> SeqEnum[RngUPolElt]
- HasComputableAbelianQuotient(G) : GrpFP -> BoolElt, GrpAb, Map
- HasFiniteAbelianQuotient(G) : GrpFP -> [ RngIntElt ]
- HasInfiniteComputableAbelianQuotient(G) : GrpFP -> BoolElt, GrpAb, Map
- HasInfinitePSL2Quotient(G) :: GrpFP -> BoolElt, SeqEnum
- HaspQuotientDefinitions(G) : GrpPC -> BoolElt
- IdealQuotient(I, J) : RngFunOrdIdl, RngFunOrdIdl -> RngFunOrdIdl
- IsEmptySimpleQuotientProcess(P) : Rec -> BoolElt
- IsQuotient(L) : TorLat -> BoolElt
- LMGRadicalQuotient(G) : GrpMat -> GrpPerm, Map, GrpMat
- LMGSocleStarQuotient(G) : GrpMat -> GrpPerm, Map, GrpMat
- LocalQuotient(T, S, I : parameters) : TenSpcElt, TenSpcElt, RngIntElt -> TenSpcElt, Hmtp
- ModularCurveQuotient(N,A) : RngIntElt, [RngIntElt] -> Crv
- NewQuotient(A) : ModAbVar -> ModAbVar, MapModAbVar
- NewQuotient(A, r) : ModAbVar, RngIntElt -> ModAbVar, MapModAbVar
- NextSimpleQuotient(~P) : Rec ->
- NilpotentQuotient(G, c) : GrpMat, RngIntElt -> GrpGPC, Map
- NilpotentQuotient(G, c) : GrpPerm, RngIntElt -> GrpGPC, Map
- NilpotentQuotient(G, c: parameters) : GrpFP, RngIntElt -> GrpGPC, Map
- NilpotentQuotient(R, d) : [ AlgFPLieElt ], RngIntElt -> AlgLie, SeqEnum, SeqEnum, UserProgram
- NumberOfQuotientGradings(C) : RngCox -> RngIntElt
- NumberOfQuotientGradings(X) : TorVar -> RngIntElt
- OldQuotient(A) : ModAbVar -> ModAbVar, MapModAbVar
- OldQuotient(A, r) : ModAbVar, RngIntElt -> ModAbVar, MapModAbVar
- PrimitiveQuotient(G) : GrpPerm -> GrpPerm, Hom, GrpPerm
- Quotient(C, K) : CosetGeom, GrpPerm -> CosetGeom
- Quotient(H2, H1) : HomModAbVar, HomModAbVar -> GrpAb, Map, Map
- Quotient(A, G) : ModAbVar, ModAbVarSubGrp -> ModAbVar, MapModAbVar
- Quotient(G) : ModAbVarSubGrp -> ModAbVar, MapModAbVar, MapModAbVar
- Quotient(T, S : parameters) : TenSpcElt, TenSpcElt -> TenSpcElt, Hmtp
- Quotient(C) : TorCon -> TorLat,TorLatMap
- QuotientDimension(I) : RngMPol -> RngIntElt
- QuotientDimension(I) : RngMPol -> RngIntElt
- QuotientGenerators(C) : TorCon -> SetEnum
- QuotientGradings(C) : RngCox -> RngIntElt
- QuotientGradings(X) : TorVar -> SeqEnum
- QuotientMap(Q1, Q2) : QuadBin, QuadBin -> Map
- QuotientModule(A, S) : AlgFP, AlgFP -> AlgFP
- QuotientModule(A, S) : AlgFP, AlgFP -> AlgFP
- QuotientModule(A, S) : AlgFP, AlgFP -> AlgFP
- QuotientModule(A, S) : AlgFP, AlgFP -> AlgFP
- QuotientModule(A, S) : AlgFPOld, AlgFPOld -> [AlgMatElt], [ModTupFldElt], [AlgFPEltOld]
- QuotientModule(I) : RngMPol -> ModMPol
- QuotientModuleAction(G, S) : GrpMat -> Map, GrpMat
- QuotientModuleImage(G, S) : GrpMat -> GrpMat
- QuotientRepresentation(L) : RngLocA -> RngUPolRes
- QuotientRing(R, I) : RngDiff, RngMPol -> RngDiff, Map
- QuotientWithPullback(L, I) : AlgLie, AlgLie -> AlgLie, Map, UserProgram, UserProgram
- RadicalQuotient(G) : GrpMat -> GrpPerm, Hom(Grp), GrpMat
- RadicalQuotient(G) : GrpPerm -> GrpPerm, Hom(GrpPerm), GrpPerm
- SimpleQuotientAlgebras(A) : AlgMat -> Rec
- SimpleQuotientProcess(F, deg1, deg2, ord1, ord2: parameters) : GrpFP, RngIntElt, RngIntElt, RngIntElt, RngIntElt -> Rec
- SocleQuotient(G) : GrpPerm -> GrpPerm, Hom, GrpPerm
- SolubleNormalQuotient(G, H) : GrpPerm -> GrpPerm, Hom(GrpPerm), GrpPerm
- SolubleQuotient(G) : Grp -> GrpPC, Map
- SolubleQuotient(F, n : parameters): GrpFP, RngIntElt -> GrpPC, Map, SeqEnum, MonStgElt
- SolvableQuotient(G): GrpMat -> GrpPC, Map
- SolvableQuotient(G): GrpPerm -> GrpPC, Map, SeqEnum, MonStgElt
- SolvableQuotient(G : parameters): GrpFP, RngIntElt -> GrpPC, Map, SeqEnum, MonStgElt
- SolvableQuotient(F, n : parameters): GrpFP, RngIntElt -> GrpPC, Map, SeqEnum, MonStgElt
- TransitiveQuotient(G) : GrpPerm -> GrpPerm, Hom, GrpPerm
- UnramifiedQuotientRing(K, k) : FldFin, RngIntElt -> Rng
- f div g : RngMPolElt, RngMPolElt -> RngMPolElt
- pAdicQuotientRing(L, k) : FldXPad, RngIntElt -> RngPadRes, Map
- pAdicQuotientRing(p, k) : RngIntElt, RngIntElt -> RngPadRes
- pCoreQuotient(G, p) : GrpPerm, RngIntElt -> GrpPerm, Map, GrpPerm
- AlgFP_Quotient (Example H89E10)
- Graph_Quotient (Example H158E10)
- GrpMatGen_Quotient (Example H65E22)
- GrpPerm_Quotient (Example H64E22)
- Grp_Quotient (Example H63E7)
V2.28, 13 July 2023