- PolyhedronInSublattice
- PolyhedronWithInequalities
- Polylog
- PolylogD
- PolylogDold
- PolylogP
- PolyMapKernel
- Polynomial
- AbsoluteCharacteristicPolynomial(a) : FldAlgElt -> RngUPolElt
- AbsoluteCharacteristicPolynomial(a) : FldNumElt -> RngUPolElt
- AbsoluteMinimalPolynomial(a) : FldAlgElt -> RngUPolElt
- AbsoluteMinimalPolynomial(a) : FldFunElt -> RngUPolElt
- AbsoluteMinimalPolynomial(a) : FldNumElt -> RngUPolElt
- AbsolutePolynomial(A) : FldAC ->
- AdditivePolynomialFromRoots(x, P) : RngElt, PlcFunElt -> RngUPolTwstElt
- AsPolynomial(v) : AlgClffElt ->
- AtkinModularPolynomial(N) : RngIntElt -> RngMPolElt
- BerlekampMassey(S) : SeqEnum -> RngUPolElt, RngIntElt
- BernoulliPolynomial(n) : RngIntElt -> RngUPolElt
- BernoulliPolynomial(n) : RngIntElt -> RngUPolElt
- BooleanPolynomialRing(n) : RngIntElt -> RngMPolBool
- BooleanPolynomialRing(n, order) : RngIntElt, MonStgElt -> RngMPolBool
- BooleanPolynomialRing(B, Q) : RngMPolBool, [RngIntElt] -> RngMPolBoolElt
- CanonicalModularPolynomial(N) : RngIntElt -> RngMPolElt
- CharacteristicPolynomial(x) : AlgAssVOrdElt -> RngUPolElt
- CharacteristicPolynomial(x) : AlgQuatElt -> RngUPolElt
- CharacteristicPolynomial(a) : FldAlgElt -> RngUPolElt
- CharacteristicPolynomial(a) : FldFinElt -> RngUPolElt
- CharacteristicPolynomial(a, E) : FldFinElt, FldFin -> RngUPolElt
- CharacteristicPolynomial(a, R) : FldFunElt, Rng -> RngUPolElt
- CharacteristicPolynomial(a) : FldNumElt -> RngUPolElt
- CharacteristicPolynomial(G) : GrphUnd -> RngUPolElt
- CharacteristicPolynomial(phi) : MapModAbVar -> RngUPolElt
- CharacteristicPolynomial(a: parameters) : AlgMatElt -> RngUPolElt
- CharacteristicPolynomial(g: parameters) : GrpMatElt -> RngPolElt
- CharacteristicPolynomial(A: parameters) : Mtrx -> RngUPolElt
- CharacteristicPolynomial(x) : RngPadElt -> RngUPolElt
- CharacteristicPolynomial(x, R) : RngPadElt, RngPad -> RngUPolElt
- CharacteristicPolynomialFromTraces(traces) : [ Fld ] -> RngUPolElt
- CharacteristicPolynomialFromTraces(traces, d, q, i) : [ Fld ], RngIntElt, RngIntElt, RngIntElt -> RngUPolElt, RngUPolElt
- CheckPolynomial(C) : Code -> RngUPolElt
- CheckWeilPolynomial(f, q, h20) : RngUPolElt, RngIntElt, RngIntElt -> BoolElt
- ChevalleyOrderPolynomial(type, n: parameters) : MonStgElt, RngIntElt -> RngUPolElt
- ChromaticPolynomial(G) : GrphUnd -> RngUPolElt
- ClassicalModularPolynomial(N) : RngIntElt -> RngMPolElt
- ConwayPolynomial(p, n) : RngIntElt, RngIntElt -> RngUPolElt
- CyclotomicPolynomial(m) : RngIntElt -> RngUPolElt
- DefiningPolynomial(A) : ArtRep -> RngUPolElt
- DefiningPolynomial(C) : Crv -> RngMPolElt
- DefiningPolynomial(E) : CrvEll -> RngMPolElt
- DefiningPolynomial(F) : FldAlg -> RngUPolElt
- DefiningPolynomial(F) : FldFin -> RngUPolElt
- DefiningPolynomial(F, E) : FldFin -> RngUPolElt
- DefiningPolynomial(F) : FldFun -> RngUPolElt
- DefiningPolynomial(F) : FldNum -> RngUPolElt
- DefiningPolynomial(Q) : FldRat -> RngUPolElt
- DefiningPolynomial(A) : GalRep -> RngUPolElt
- DefiningPolynomial(L) : RngLocA -> RngUPolElt
- DefiningPolynomial(L) : RngPad -> RngUPolElt
- DefiningPolynomial(K, L) : RngPad, RngPad -> RngUPolElt
- DefiningPolynomial(s) : RngPowAlgElt -> RngUPolElt
- DefiningPolynomial(E) : RngSerExt -> RngUPolElt
- DefiningPolynomial(R) : RngXPad -> RngUPolElt
- DefiningPolynomial(C) : Sch -> RngMPolElt
- DefiningPolynomial(C) : Sch -> RngMPolElt
- DefiningPolynomial(X) : Sch -> RngMPolElt
- DefiningPolynomial(K) : SrfKum -> RngMPolElt
- DefiningSubschemePolynomial(G) : SchGrpEll -> RngUPolElt
- DivisionPolynomial(E, n) : CrvEll, RngIntElt -> RngUPolElt, RngUPolElt, RngUPolElt
- DualPolynomial(f) : RngUPolElt -> RngUPolElt
- EhrhartPolynomial(P) : TorPol -> [RngUPolElt]
- ElementarySymmetricPolynomial(P, k) : RngMPol, RngIntElt -> RngMPolElt
- ElementarySymmetricPolynomial(P, k) : RngMPol, RngIntElt -> RngMPolElt
- ElementarySymmetricPolynomial(R, i) : RngSLPol, RngIntElt -> RngSLPolElt
- EvaluatePolynomial(C, a, b, c) : CrvHyp, RngElt, RngElt, RngElt -> RngElt
- ExactPolynomial(f) : RngUPolXPadElt -> RngUPolXPadElt
- ExistsConwayPolynomial(p, n) : RngIntElt, RngIntElt -> BoolElt, RngUPolElt
- FactoredCharacteristicPolynomial(phi) : MapModAbVar -> RngUPolElt
- FactoredCharacteristicPolynomial(A: parameters) : Mtrx -> [ <RngUPolElt, RngIntElt>]
- FactoredHeckePolynomial(A, n) : ModAbVar, RngIntElt -> RngUPolElt
- FactoredMinimalPolynomial(A: parameters) : Mtrx -> [ <RngUPolElt, RngIntElt>]
- FactorisationToPolynomial(f) : [Tup] -> BoolElt
- FrobeniusPolynomial(A, P) : ModAbVar, RngOrdIdl -> RngUPolElt
- FrobeniusPolynomial(A : parameters) : ModAbVar -> RngUPolElt
- FrobeniusPolynomial(A, p : parameters) : ModAbVar, RngIntElt -> RngUPolElt
- GegenbauerPolynomial(n, m) : RngIntElt, RngElt ->RngUPolElt
- GeneratorPolynomial(C) : Code -> RngUPolElt
- GenericMinimalPolynomial(x) : AlgGenElt -> FldElt
- HasPolynomial(N) : NwtnPgon -> BoolElt
- HasPolynomialFactorization(R) : Rng -> BoolElt
- HeckePolynomial(A, n) : ModAbVar, RngIntElt -> RngUPolElt
- HeckePolynomial(M, n) : ModSym, RngIntElt -> RngUPolResElt
- HeckePolynomial(M, n : parameters) : ModFrm, RngIntElt -> RngUPolElt
- HermitePolynomial(n) : RngIntElt -> RngUPolElt
- HilbertClassPolynomial(D) : RngIntElt -> RngUPolElt
- HilbertPolynomial(D) : DivTor -> [RngUPolElt]
- HilbertPolynomial(I) : ModMPol -> RngUPolElt, RngIntElt
- HilbertPolynomial(I) : RngMPol -> RngUPolElt, RngIntElt
- HilbertPolynomialOfCurve(g,m) : RngIntElt,RngIntElt -> RngUPolElt
- HyperellipticCurveFromShiodaInvariants(JI) : SeqEnum -> CrvHyp, GrpPerm
- HyperellipticPolynomial(A) : AnHcJac -> RngUPolElt
- IndicialPolynomial(L, p) : RngDiffOpElt, PlcFunElt -> RngElt
- IrreducibleLowTermGF2Polynomial(n) : RngIntElt -> RngUPolElt
- IrreduciblePolynomial(F, n) : FldFin, RngIntElt -> RngUPolElt
- IrreducibleSparseGF2Polynomial(n) : RngIntElt -> RngUPolElt
- IsPolynomial(s) : RngPowAlgElt -> BoolElt, RngMPolElt
- IsProbablyPermutationPolynomial(p) : RngUPolElt -> BoolElt
- IsRegular(f) : MapSch -> BoolElt
- KrawchoukPolynomial(K, n, k) : FldFin, RngIntElt, RngIntElt -> RngUPolElt
- LaguerrePolynomial(n) : RngIntElt -> RngUPolElt
- LegendrePolynomial(C) : CrvCon -> RngMPolElt, ModMatRngElt
- LegendrePolynomial(n) : RngIntElt -> RngUPolElt
- LocalPolynomialRing(K, n) : Rng, RngIntElt -> RngMPolLoc
- LocalPolynomialRing(K, n, order) : Rng, RngIntElt, MonStgElt, ... -> RngMPolLoc
- LocalPolynomialRing(K, n, T) : Rng, RngIntElt, Tup -> RngMPolLoc
- MinimalHeckePolynomial(A, n) : ModAbVar, RngIntElt -> RngUPolElt
- MinimalPolynomial(x) : AlgAssVOrdElt -> RngUPolElt
- MinimalPolynomial(f) : AlgFPElt -> RngUPol
- MinimalPolynomial(a) : AlgGenElt -> RngUPolElt
- MinimalPolynomial(a) : AlgMatElt -> RngUPolElt
- MinimalPolynomial(x) : AlgQuatElt -> RngUPolElt
- MinimalPolynomial(a) : FldACElt -> RngUPolElt
- MinimalPolynomial(a) : FldAlgElt -> RngUPolElt
- MinimalPolynomial(a) : FldFinElt -> RngUPolElt
- MinimalPolynomial(a, E) : FldFinElt, FldFin -> RngUPolElt
- MinimalPolynomial(a, R) : FldFunElt, Rng -> RngUPolElt
- MinimalPolynomial(a) : FldNumElt -> RngUPolElt
- MinimalPolynomial(q) : FldRatElt -> RngUPolElt
- MinimalPolynomial(r,d,N) : FldReElt, RngIntElt, RngIntElt -> RngUPolElt, FldReElt
- MinimalPolynomial(g) : GrpMatElt -> RngPolElt
- MinimalPolynomial(phi) : MapModAbVar -> RngUPolElt
- MinimalPolynomial(A: parameters) : Mtrx -> RngUPolElt
- MinimalPolynomial(s) : RngDiffElt -> RngUPolElt
- MinimalPolynomial(n) : RngIntElt -> RngUPolElt
- MinimalPolynomial(f) : RngMPolResElt -> RngUPol
- MinimalPolynomial(x) : RngPadElt -> RngUPolElt
- MinimalPolynomial(x, R) : RngPadElt, RngPad -> RngUPolElt
- MultivariatePolynomial(P, f, i) : RngMPol, RngUPolElt, RngIntElt -> RngMPolElt
- NewtonPolynomial(F) : NwtnPgonFace -> RngUPolElt
- Norm(a) : RngLocAElt -> RngElt
- Polynomial(N) : NwtnPgon -> RngElt
- Polynomial(R, f) : Rng, RngUPolElt -> RngUPolElt
- Polynomial(R, Q) : Rng, [ RngElt] -> RngUPolElt
- Polynomial(G) : RngUPolTwstElt -> RngUPolElt
- Polynomial(Q) : [ RngElt ] -> RngUPolElt
- Polynomial(C, M) : [RngElt], [RngMPolElt] -> RngMPolElt
- PolynomialAlgebra(R) : Rng -> RngUPol
- PolynomialCoefficient(s, i) : RngPowLazElt, RngIntElt -> RngPowLazElt
- PolynomialMap(L) : LinearSys -> RngMPolElt
- PolynomialRing(model) : ModelG1 -> RngMPol
- PolynomialRing(R : parameters) : Rng -> RngUPol
- PolynomialRing(R, n) : Rng, RngIntElt -> RngMPol
- PolynomialRing(R, n) : Rng, RngIntElt -> RngMPol
- PolynomialRing(R, n, order) : Rng, RngIntElt, MonStgElt, ... -> RngMPol
- PolynomialRing(R, n, order) : Rng, RngIntElt, MonStgElt, ... -> RngMPol
- PolynomialRing(R, n, T) : Rng, RngIntElt, Tup -> RngMPol
- PolynomialRing(R, Q) : Rng, [ RngIntElt ] -> RngMPol
- PolynomialRing(R) : RngInvar -> RngMPol
- PolynomialSieve(F, m, J0, J1,MaxAlpha) : RngMPolElt, RngIntElt, RngIntElt, RngIntElt, FldReElt -> List
- PowerPolynomial(f,n) : RngUPolElt, RngIntElt -> RngUPolElt
- PrimitivePolynomial(F, m) : FldFin, RngIntElt -> RngUPolElt
- QuadraticFormPolynomial(Q) : AlgMatElt -> RngPolElt
- QuadraticFormPolynomial(V) : ModTupRng -> RngPolElt
- RamificationResidualPolynomial(f, face) : RngUPolElt[FldXPad], NwtnPgonFace -> RngUPolElt
- RandomIrreduciblePolynomial(F, n) : FldFin, RngIntElt -> RngUPolElt
- RandomPrimePolynomial(R, d) : RngUPol, RngIntElt -> RngUPolElt
- ReciprocalPolynomial(f) : RngUPolElt -> RngUPolElt
- ReducedLegendrePolynomial(C) : CrvCon -> RngMPolElt, ModMatRngElt
- SupersingularPolynomial(p) : RngIntElt -> RngUPolElt
- SwinnertonDyerPolynomial(n) : RngIntElt -> RngUPolElt
- TildeDualPolynomial(f) : RngUPolElt -> RngUPolElt
- TwoTorsionPolynomial(E) : CrvEll -> RngMPolElt
- UnivariatePolynomial(f) : RngMPolElt -> RngUPolElt
- WeberClassPolynomial(D) : RngIntElt -> RngUPolElt, FldFunRatUElt
- WeberToHilbertClassPolynomial(f,D) : RngUPolElt, RngIntElt -> RngUPolElt
- WeilPolynomialOfDegree2K3Surface(f6) : RngMPolElt -> RngUPolElt, RngUPolElt
- WeilPolynomialOverFieldExtension(f, deg) : RngUPolElt, RngIntElt -> RngUPolElt
- WeilPolynomialToRankBound(f, q) : RngUPolElt, RngIntElt -> RngIntElt
V2.28, 13 July 2023