Eisenstein Series

The intrinsics below require that the base ring of M has characteristic 0. To compute mod p eigenforms, use the Reduction intrinsic (see Section Reductions and Embeddings).

EisensteinSeries(M) : ModFrm -> List
List of the Eisenstein series associated to the modular forms space M. By "associated to" we mean that the Eisenstein series lies in M tensor C.
IsEisensteinSeries(f) : ModFrmElt -> BoolElt
Returns true if the modular form f was created using EisensteinSeries.
EisensteinData(f) : ModFrmElt -> Tup
The data <χ, ψ, t, χ', ψ'> that defines the Eisenstein series (modular form) f. Here χ is a primitive character of conductor S, ψ is primitive of conductor M, and MSt divides N, where N is the level of f. (The additional characters χ' and ψ' are equal to χ and ψ respectively, except they take values in the big field Q(ζφ(N)) * instead of Q(ζn) * , where n is the order of χ or ψ.) The Eisenstein series associated to (χ, ψ, t) has q-expansion c0 + ∑m≥1 (∑n|mψ(n)nk - 1χ(m/n))qmt, where c0=0 if S>1 and c0=L(1 - k, ψ)/2 if S=1.

Example ModFrm_EisensteinSeries (H141E14)

We illustrate the above intrinsics by computing the Eisenstein series in M31(12)).
> M := ModularForms(Gamma1(12),3); M;
Space of modular forms on Gamma_1(12) of weight 3 and dimension 13
over Integer Ring.
> E := EisensteinSubspace(M); E;
Space of modular forms on Gamma_1(12) of weight 3 and dimension 10
over Integer Ring.
> s := EisensteinSeries(E); s;
[*
-1/9 + q - 3*q^2 + q^3 + 13*q^4 - 24*q^5 - 3*q^6 + 50*q^7 + O(q^8),
-1/9 + q^2 - 3*q^4 + q^6 + O(q^8),
-1/9 + q^4 + O(q^8),
-1/4 + q + q^2 - 8*q^3 + q^4 + 26*q^5 - 8*q^6 - 48*q^7 + O(q^8),
-1/4 + q^3 + q^6 + O(q^8),
q + 3*q^2 + 9*q^3 + 13*q^4 + 24*q^5 + 27*q^6 + 50*q^7 + O(q^8),
q^2 + 3*q^4 + 9*q^6 + O(q^8),
q^4 + O(q^8),
q + 4*q^2 + 8*q^3 + 16*q^4 + 26*q^5 + 32*q^6 + 48*q^7 + O(q^8),
q^3 + 4*q^6 + O(q^8)
*]
> a := EisensteinData(s[1]); a;
<1, $.1, 1, 1, $.2>
> Parent(a[2]);
Group of Dirichlet characters of modulus 3 over Rational Field
> Order(a[2]);
2
> Parent(a[5]);
Group of Dirichlet characters of modulus 12 over Cyclotomic Field of
order 4 and degree 2
> Parent(s[1]);
Space of modular forms on Gamma_1(12) of weight 3 and dimension 10
over Rational Field.
> IsEisensteinSeries(s[1]);
true
V2.28, 13 July 2023