Parametrized Structures

The modular curves X0(N) parametrize elliptic curves together with the structure of a cyclic isogeny, or equivalently, a cyclic subgroup scheme of the N-torsion of the elliptic curve. over the modular curve, singularities of the chosen surface may obstruct the construction of the corresponding isogeny.

Isogeny(E,P) : CrvEll, Pt -> MapCrvEll
Given an elliptic curve E and a point P on some X0(N) corresponding to a cyclic level structure on E, the function returns an isogeny f: E -> F corresponding to P. The isogeny is defined by the formulae of Velu in such a way that the pull-back of the invariant differential of F is the invariant differential on E.
SubgroupScheme(E,P) : CrvEll, Pt -> CrvEllSubgroup
Given an elliptic curve E and a point P on some X0(N) corresponding to a cyclic level structure on E, the function returns the subgroup scheme of E parameterized by X0(N).

Example CrvMod_Parametrized subgroup schemes (H137E3)

In this example we create the function field of the modular curve and compute the corresponding parameterized subgroup scheme for the canonical model of the modular curve X0(7).
> A2 := AffineSpace(RationalField(),2);
> X0 := ModularCurve(A2,"Canonical",7);
> K0<u,j> := FunctionField(X0);
> j;
(u^8 + 28*u^7 + 322*u^6 + 1904*u^5 + 5915*u^4 + 8624*u^3 + 4018*u^2 +
   748*u + 49)/u
We can now create an elliptic curve with this j-invariant and compute the corresponding subgroup scheme.
> E := EllipticCurveFromjInvariant(j);
> E;
Elliptic Curve defined by y^2 + x*y = x^3 - 36*u/(u^8 + 28*u^7 + 322*u^6 +
 1904*u^5 + 5915*u^4 + 8624*u^3 + 4018*u^2 - 980*u + 49)*x - u/(u^8 +
 28*u^7 + 322*u^6 + 1904*u^5 + 5915*u^4 + 8624*u^3 + 4018*u^2 - 980*u + 49)
 over Function Field of Modular Curve over Rational Field defined by
 $.1^8 + 28*$.1^7*$.3 + 322*$.1^6*$.3^2 + 1904*$.1^5*$.3^3 +
 5915*$.1^4*$.3^4 + 8624*$.1^3*$.3^5 + 4018*$.1^2*$.3^6 - $.1*$.2*$.3^6 +
 748*$.1*$.3^7 + 49*$.3^8
> ModuliPoints(X0,E);
[ (u, (u^8 + 28*u^7 + 322*u^6 + 1904*u^5 + 5915*u^4 + 8624*u^3 +
  4018*u^2 + 748*u + 49)/u) ]
> P := $1[1];
> SubgroupScheme(E,P);
Subgroup of E defined by x^3 + (-u^3 - 13*u^2 - 47*u - 14)/(u^4 + 14*u^3 +
 63*u^2 + 70*u - 7)*x^2 + (u^5 + 19*u^4 + 133*u^3 + 373*u^2 + 271*u + 49)/
 (u^8 + 28*u^7 + 322*u^6 + 1904*u^5 + 5915*u^4 + 8624*u^3 + 4018*u^2 -
 980*u + 49)*x + (-u^6 - 21*u^5 - 166*u^4 - 569*u^3 - 750*u^2 - 349*u -
 49)/(u^12 + 42*u^11 + 777*u^10 + 8246*u^9 + 54810*u^8 + 233730*u^7 +
 628425*u^6 + 999306*u^5 + 801738*u^4 + 159838*u^3 - 93639*u^2 +
 10290*u - 343)
We now replay the same computation for the Atkin model for X0(7).
> X0 := ModularCurve(A2,"Atkin",7);
> K0<u,j> := FunctionField(X0);
> j;
j
> E := EllipticCurveFromjInvariant(j);
> E;
Elliptic Curve defined by y^2 + x*y = x^3 + (36/(u^8 - 984*u^7 + 196476*u^6 +
 21843416*u^5 + 805505190*u^4 + 14493138072*u^3 + 138563855164*u^2 +
 677923505640*u + 1338887352609)*j + (-36*u^7 + 12852*u^5 + 51408*u^4 -
 1139292*u^3 - 7372512*u^2 + 6730380*u + 76688208)/(u^8 - 984*u^7 +
 196476*u^6 + 21843416*u^5 + 805505190*u^4 + 14493138072*u^3 +
 138563855164*u^2 + 677923505640*u + 1338887352609))*x + (1/(u^8 - 984*u^7 +
 196476*u^6 + 21843416*u^5 + 805505190*u^4 + 14493138072*u^3 +
 138563855164*u^2 + 677923505640*u + 1338887352609)*j + (-u^7 + 357*u^5 +
 1428*u^4 - 31647*u^3 - 204792*u^2 + 186955*u + 2130228)/(u^8 - 984*u^7 +
 196476*u^6 + 21843416*u^5 + 805505190*u^4 + 14493138072*u^3 +
 138563855164*u^2 + 677923505640*u + 1338887352609)) over
 Function Field of Modular Curve over Rational Field defined by
 $.1^8 - $.1^7*$.2 + 744*$.1^7*$.3 + 196476*$.1^6*$.3^2 +
 357*$.1^5*$.2*$.3^2 + 21226520*$.1^5*$.3^3 + 1428*$.1^4*$.2*$.3^3 +
 803037606*$.1^4*$.3^4 - 31647*$.1^3*$.2*$.3^4 + 14547824088*$.1^3*$.3^5 -
 204792*$.1^2*$.2*$.3^5 + 138917735740*$.1^2*$.3^6 + 186955*$.1*$.2*$.3^6 +
 $.2^2*$.3^6 + 677600447400*$.1*$.3^7 + 2128500*$.2*$.3^7 + 1335206318625*$.3^8
> P := X0![u,j];
> SubgroupScheme(E,P);
Subgroup of E defined by x^3 + ((-2*u^2 - 316*u - 2906)/(u^9 - 497*u^8 -
 20532*u^7 - 81388*u^6 + 4746950*u^5 + 56167290*u^4 - 1279028*u^3 -
 2650748588*u^2 - 11224313439*u - 8626202865)*j + (2*u^9 + 315*u^8 +
 2686*u^7 - 93700*u^6 - 1255594*u^5 + 3135966*u^4 + 104728146*u^3 +
 352853636*u^2 - 681445096*u - 3227101785)/(u^9 - 497*u^8 - 20532*u^7 -
 81388*u^6 + 4746950*u^5 + 56167290*u^4 - 1279028*u^3 - 2650748588*u^2 -
 11224313439*u - 8626202865))*x^2 + ((-u^6 - 262*u^5 - 16695*u^4 - 248404*u^3 -
 457567*u^2 + 11521914*u + 54297783)/(u^13 - 989*u^12 + 201198*u^11 +
 21056034*u^10 + 657230331*u^9 + 6165550233*u^8 - 88238124492*u^7 -
 2578695909108*u^6 - 20624257862361*u^5 + 1318238025445*u^4 +
 1038081350842750*u^3 + 6551865190346034*u^2 + 15514646620480317*u +
 9981405213700095)*j + (u^13 + 262*u^12 + 16338*u^11 + 153443*u^10 -
 5846023*u^9 - 115347903*u^8 + 30945748*u^7 + 15440847094*u^6 +
 109278156555*u^5 - 206898429120*u^4 - 5031013591446*u^3 -
 17024110451577*u^2 - 2556327655701*u + 47383402701465)/(u^13 - 989*u^12 +
 201198*u^11 + 21056034*u^10 + 657230331*u^9 + 6165550233*u^8 -
 88238124492*u^7 - 2578695909108*u^6 - 20624257862361*u^5 + 1318238025445*u^4 +
 1038081350842750*u^3 + 6551865190346034*u^2 + 15514646620480317*u +
 9981405213700095))*x + (-u^10 - 338*u^9 - 33893*u^8 - 1121560*u^7 -
 8257018*u^6 + 187293764*u^5 + 3504845638*u^4 + 15046974856*u^3 -
 62184511493*u^2 - 623227561058*u - 1183475711457)/(7*u^17 - 10367*u^16 +
 4654944*u^15 - 389781392*u^14 - 97999195364*u^13 - 5984563052076*u^12 -
 171524908893072*u^11 - 2216173007598816*u^10 + 4849421263003170*u^9 +
 613490830231624030*u^8 + 9296018340946012480*u^7 + 59438783556182416176*u^6 -
 23742623380012390196*u^5 - 3238111295794492499900*u^4 -
 24353154984175741819536*u^3 - 86474917191526857048384*u^2 -
 146131978942592594496657*u - 80846597418916147173495)*j +
 (u^17 + 338*u^16 + 33536*u^15 + 999466*u^14 - 4293800*u^13 - 625188410*u^12 -
 6912544240*u^11 + 82395591738*u^10 + 2064805256370*u^9 + 6482044820554*u^8 -
 152652278669056*u^7 - 1482689798210194*u^6 - 1214725952426000*u^5 +
 43848981757984690*u^4 + 215958476310275824*u^3 + 192371928062911406*u^2 -
 828594020518663419*u - 1409818017397793940)/(7*u^17 - 10367*u^16 + 4654944*u^15 -
 389781392*u^14 - 97999195364*u^13 - 5984563052076*u^12 - 171524908893072*u^11 -
 2216173007598816*u^10 + 4849421263003170*u^9 + 613490830231624030*u^8 +
 9296018340946012480*u^7 + 59438783556182416176*u^6 - 23742623380012390196*u^5 -
 3238111295794492499900*u^4 - 24353154984175741819536*u^3 -
 86474917191526857048384*u^2 - 146131978942592594496657*u -
 80846597418916147173495)
V2.28, 13 July 2023