About
Calculator
Ordering
FAQ
Download
Documentation
Citations
Conferences
Links
Contact
CAG
Login
Magma
Computer • algebra
Documentation
Contents
Index (i)
Search
IsPrincipalSeries
IsPrincipalSeries(pi) : RepLoc -> BoolElt
IsProbablePrime
IsProbablyPrime(n: parameter) : RngIntElt -> BoolElt
IsProbablePrime(n: parameter) : RngIntElt -> BoolElt
IsProbablyMaximal
IsProbablyMaximal(G, H: parameters) : GrpPerm, GrpPerm -> BoolElt
IsProbablyPerfect
IsProbablyPerfect(G : parameters): Grp -> BoolElt
GrpMatFF_IsProbablyPerfect (Example H66E1)
IsProbablyPermutationPolynomial
IsProbablyPermutationPolynomial(p) : RngUPolElt -> BoolElt
IsProbablyPrime
IsProbablyPrime(n: parameter) : RngIntElt -> BoolElt
IsProbablePrime(n: parameter) : RngIntElt -> BoolElt
IsProbablySupersingular
IsProbablySupersingular(E) : CrvEll -> BoolElt
IsProductOfParallelDescendingCycles
IsProductOfParallelDescendingCycles(p) : GrpPermElt -> BoolElt
IsProjective
IsProjective(C) : Code -> BoolElt
IsProjective(C) : Code -> BoolElt
IsProjective(C) : Code -> BoolElt
IsProjective(M) : ModAlg -> BoolElt, SeqEnum
IsProjective(M) : ModGrp -> BoolElt
IsProjective(X) : Sch -> BoolElt
IsProjective(X) : Sch -> BoolElt
IsProjective(X) : TorVar -> BoolElt
IsProjectivelyIrreducible
IsProjectivelyIrreducible(R) : RootStr -> BoolElt
IsProjectivelyIrreducible(R) : RootSys -> BoolElt
IsProper
IsProper(I) : AlgFP -> BoolElt
IsProper(I) : RngMPol -> BoolElt
IsProper(I) : RngMPolLoc -> BoolElt
IsProper(I) : RngMPolRes -> BoolElt
IsProperChainMap
IsProperChainMap(f) : MapChn -> BoolElt
IsProportional
IsProportional(X, k) : Mtrx, RngIntElt -> BoolElt, Tup
IsPseudoReflection
IsPseudoReflection(r) : Mtrx -> BoolElt, ModTupRngElt, ModTupRngElt
IsPseudoSymplecticSpace
IsPseudoSymplecticSpace(W) : ModTupFld -> BoolElt
IspSubalgebra
IspSubalgebra(L, M) : AlgLie, AlgLie -> AlgLie
IsRestrictedSubalgebra(L, M) : AlgLie, AlgLie -> AlgLie
IsPure
IsPure(Q) : CodeQuantum -> BoolElt
IsPure(G, H) : GrpAb, GrpAb -> BoolElt
IsPyramid
IsPyramid(P) : TorPol -> BoolElt, TorLatElt, TorPol, Map, TorLatElt
IsQCartier
IsQCartier(D) : DivTorElt -> BoolElt
IsQFactorial
IsSimplicial(P) : TorPol -> BoolElt
IsQFactorial(C) : TorCon -> BoolElt
IsQFactorial(F) : TorFan -> BoolElt
IsQFactorial(X) : TorVar -> BoolElt
IsQGorenstein
IsQGorenstein(C) : TorCon -> BoolElt
IsQGorenstein(F) : TorFan -> BoolElt
IsQGorenstein(X) : TorVar -> BoolElt
IsQGroup
IsQGroup(G) : Grp -> BoolElt
IsQPrincipal
IsQPrincipal(D) : DivTorElt -> BoolElt
Isqrt
Isqrt(n) : RngIntElt -> RngIntElt
IsQuadratic
IsQuadratic(K) : FldAlg -> BoolElt, FldQuad
IsQuadratic(K) : FldNum -> BoolElt, FldQuad
IsQuadraticTwist
IsQuadraticTwist(E, F) : CrvEll, CrvEll -> BoolElt, RngElt
IsQuadraticTwist(C, D) : CrvHyp, CrvHyp -> BoolElt, RngElt
IsQuadricIntersection
IsQuadricIntersection(C) : Crv -> BoolElt, [AlgMatElt]
IsQuasisplit
IsQuasisplit(R) : RootDtm -> BoolElt
IsQuaternionAlgebra
IsQuaternionAlgebra(B) : AlgAss -> BoolElt, AlgQuat, Map
IsQuaternionic
IsQuaternionic(A) : ModAbVar -> BoolElt
IsQuotient
IsQuotient(L) : TorLat -> BoolElt
IsRadical
IsRadical(I) : RngMPol -> BoolElt
IsRadical(I) : RngMPolRes -> BoolElt
IsRamified
IsRamified(A, p) : ArtRep, RngIntElt -> BoolElt
IsRamified(A) : GalRep -> BoolElt
IsRamified(p, A) : RngElt, AlgQuat -> BoolElt
IsRamified(P) : RngFunOrdIdl -> BoolElt
IsRamified(P, O) : RngFunOrdIdl, RngFunOrd -> BoolElt
IsRamified(L) : RngLocA -> BoolElt
IsRamified(P) : RngOrdIdl -> BoolElt
IsRamified(P, O) : RngOrdIdl, RngOrd -> BoolElt
IsRamified(R) : RngPad -> BoolElt
IsRational
IsRational(X) : Srfc -> BoolElt
IsRationalCurve
IsRationalCurve(S) : Sch -> BoolElt, CrvRat
IsRationalCurve(X) : Sch -> BoolElt,CrvRat
IsRationalFunctionField
IsRationalFunctionField(F) : FldFunG -> BoolElt
IsRationallyEquivalent
IsRationallyEquivalent(L1, L2) : LatNF, LatNF -> BoolElt
IsRationallyEquivalent(L1, L2, p) : LatNF, LatNF, RngOrdIdl -> BoolElt
IsRC
IsRC(X) : IncGeom -> BoolElt
IsResiduallyConnected(X) : IncGeom -> BoolElt
IsReal
IsReal(x) : AlgChtrElt -> BoolElt
IsReal(c) : FldComElt -> BoolElt
IsReal(a) : FldCycElt -> BoolElt
IsReal(p) : PlcNumElt -> BoolElt
IsReal(p) : PlcNumElt -> BoolElt
IsReal(z) : SpcHypElt -> BoolElt
IsRealisableOverSmallerField
IsRealisableOverSmallerField(M) : ModGrp -> BoolElt, ModGrp
Contents
Index (i)
Search
V2.28, 13 July 2023