About
Calculator
Ordering
FAQ
Download
Download Magma
Databases
User Contributions
Documentation
Handbook
Overview
Release Notes
Discovering Maths with Magma
First Steps in Magma (pdf)
Solving Problems with Magma (pdf)
Acknowledgements
Citations
Conferences
Links
Contact
CAG
Login
Magma
Computer • algebra
Documentation
Contents
Index (i)
Search
IsPrincipalSeries
IsPrincipalSeries(pi) : RepLoc -> BoolElt
IsProbablePrime
IsProbablyPrime(n: parameter) : RngIntElt -> BoolElt
IsProbablePrime(n: parameter) : RngIntElt -> BoolElt
IsProbablyMaximal
IsProbablyMaximal(G, H: parameters) : GrpPerm, GrpPerm -> BoolElt
IsProbablyPerfect
IsProbablyPerfect(G : parameters): Grp -> BoolElt
GrpMatFF_IsProbablyPerfect (Example H66E1)
IsProbablyPermutationPolynomial
IsProbablyPermutationPolynomial(p) : RngUPolElt -> BoolElt
IsProbablyPrime
IsProbablyPrime(n: parameter) : RngIntElt -> BoolElt
IsProbablePrime(n: parameter) : RngIntElt -> BoolElt
IsProbablySupersingular
IsProbablySupersingular(E) : CrvEll -> BoolElt
IsProductOfParallelDescendingCycles
IsProductOfParallelDescendingCycles(p) : GrpPermElt -> BoolElt
IsProjective
IsProjective(C) : Code -> BoolElt
IsProjective(C) : Code -> BoolElt
IsProjective(C) : Code -> BoolElt
IsProjective(M) : ModAlg -> BoolElt, SeqEnum
IsProjective(M) : ModGrp -> BoolElt
IsProjective(X) : Sch -> BoolElt
IsProjective(X) : Sch -> BoolElt
IsProjective(X) : TorVar -> BoolElt
IsProjectivelyIrreducible
IsProjectivelyIrreducible(R) : RootStr -> BoolElt
IsProjectivelyIrreducible(R) : RootSys -> BoolElt
IsProper
IsProper(I) : AlgFP -> BoolElt
IsProper(I) : RngMPol -> BoolElt
IsProper(I) : RngMPolLoc -> BoolElt
IsProper(I) : RngMPolRes -> BoolElt
IsProperChainMap
IsProperChainMap(f) : MapChn -> BoolElt
IsProportional
IsProportional(X, k) : Mtrx, RngIntElt -> BoolElt, Tup
IsPseudoReflection
IsPseudoReflection(r) : Mtrx -> BoolElt, ModTupRngElt, ModTupRngElt
IsPseudoSymplecticSpace
IsPseudoSymplecticSpace(W) : ModTupFld -> BoolElt
IspSubalgebra
IspSubalgebra(L, M) : AlgLie, AlgLie -> AlgLie
IsRestrictedSubalgebra(L, M) : AlgLie, AlgLie -> AlgLie
IsPure
IsPure(Q) : CodeQuantum -> BoolElt
IsPure(G, H) : GrpAb, GrpAb -> BoolElt
IsPyramid
IsPyramid(P) : TorPol -> BoolElt, TorLatElt, TorPol, Map, TorLatElt
IsQCartier
IsQCartier(D) : DivTorElt -> BoolElt
IsQFactorial
IsSimplicial(P) : TorPol -> BoolElt
IsQFactorial(C) : TorCon -> BoolElt
IsQFactorial(F) : TorFan -> BoolElt
IsQFactorial(X) : TorVar -> BoolElt
IsQGorenstein
IsQGorenstein(C) : TorCon -> BoolElt
IsQGorenstein(F) : TorFan -> BoolElt
IsQGorenstein(X) : TorVar -> BoolElt
IsQGroup
IsQGroup(G) : Grp -> BoolElt
IsQPrincipal
IsQPrincipal(D) : DivTorElt -> BoolElt
Isqrt
Isqrt(n) : RngIntElt -> RngIntElt
IsQuadratic
IsQuadratic(K) : FldAlg -> BoolElt, FldQuad
IsQuadratic(K) : FldNum -> BoolElt, FldQuad
IsQuadraticTwist
IsQuadraticTwist(E, F) : CrvEll, CrvEll -> BoolElt, RngElt
IsQuadraticTwist(C, D) : CrvHyp, CrvHyp -> BoolElt, RngElt
IsQuadricIntersection
IsQuadricIntersection(C) : Crv -> BoolElt, [AlgMatElt]
IsQuasisplit
IsQuasisplit(R) : RootDtm -> BoolElt
IsQuaternionAlgebra
IsQuaternionAlgebra(B) : AlgAss -> BoolElt, AlgQuat, Map
IsQuaternionic
IsQuaternionic(A) : ModAbVar -> BoolElt
IsQuotient
IsQuotient(L) : TorLat -> BoolElt
IsRadical
IsRadical(I) : RngMPol -> BoolElt
IsRadical(I) : RngMPolRes -> BoolElt
IsRamified
IsRamified(A, p) : ArtRep, RngIntElt -> BoolElt
IsRamified(A) : GalRep -> BoolElt
IsRamified(p, A) : RngElt, AlgQuat -> BoolElt
IsRamified(P) : RngFunOrdIdl -> BoolElt
IsRamified(P, O) : RngFunOrdIdl, RngFunOrd -> BoolElt
IsRamified(L) : RngLocA -> BoolElt
IsRamified(P) : RngOrdIdl -> BoolElt
IsRamified(P, O) : RngOrdIdl, RngOrd -> BoolElt
IsRamified(R) : RngPad -> BoolElt
IsRational
IsRational(X) : Srfc -> BoolElt
IsRationalCurve
IsRationalCurve(S) : Sch -> BoolElt, CrvRat
IsRationalCurve(X) : Sch -> BoolElt,CrvRat
IsRationalFunctionField
IsRationalFunctionField(F) : FldFunG -> BoolElt
IsRationallyEquivalent
IsRationallyEquivalent(L1, L2) : LatNF, LatNF -> BoolElt
IsRationallyEquivalent(L1, L2, p) : LatNF, LatNF, RngOrdIdl -> BoolElt
IsRC
IsRC(X) : IncGeom -> BoolElt
IsResiduallyConnected(X) : IncGeom -> BoolElt
IsReal
IsReal(x) : AlgChtrElt -> BoolElt
IsReal(c) : FldComElt -> BoolElt
IsReal(a) : FldCycElt -> BoolElt
IsReal(p) : PlcNumElt -> BoolElt
IsReal(p) : PlcNumElt -> BoolElt
IsReal(z) : SpcHypElt -> BoolElt
IsRealisableOverSmallerField
IsRealisableOverSmallerField(M) : ModGrp -> BoolElt, ModGrp
Contents
Index (i)
Search
V2.28, 28 February 2025