Given an [[n1, k1, d1]] quantum code Q1, and an [[n2, k2, d2]] quantum code Q2, return the [[n1 + nn, k1 + k2, min{d1, d2}]] quantum code which is their direct product.
Given an [[n, k, d]] quantum code Q, return the extended [[n + 1, k, d]] quantum code.
Perform m extensions on the [[n, k, d]] quantum code Q, returning the extended [[n + m, k, d]] quantum code.
Given a [[n, k, d]] quantum code Q, and a coordinate position i, return the [[n - 1, k, d'>=d - 1]] quantum code produced by puncturing at position i.
Given a [[n, k, d]] quantum code Q, and a set of coordinate positions I of size s, return the [[n - s, k, d'>=d - s]] quantum code produced by puncturing at the positions in I.
Given a [[n, k, d]] quantum code Q, and a coordinate position i, return the [[n - 1, k'>=k - 1, d'>=d]] quantum code produced by shortening at position i.This process will not necessarily result in a valid (symplectic self-orthogonal) quantum code, and an error will be given if it fails.
Given a [[n, k, d]] quantum code Q, and a set of coordinate positions I of size s, return the [[n - s, k'>=k - s, d'>=d]] quantum code produced by shortening at the positions in I.This process will not necessarily result in a valid (symplectic self-orthogonal) quantum code, and an error will be given if it fails.
Applies the permutation τ to the coordinates of the quantum code C.
> F<w> := GF(4); > V7 := VectorSpace(F, 7); > v1 := V7 ! [1,0,0,0,0,0,0]; > v2 := V7 ! [w^2,1,w^2,w,0,0,w]; > Q1 := QuantumQuasiCyclicCode([v1, v2] : LinearSpan := true); > _ := MinimumWeight(Q1); > Q1:Minimal; [[14, 0, 6]] self-dual Quantum code over GF(2^2) > > v1 := V7 ! [1,0,1,1,1,0,0]; > v2 := V7 ! [1,w^2,w,w,1,0,w^2]; > Q2 := QuantumQuasiCyclicCode([v1, v2] : LinearSpan := true); > _ := MinimumWeight(Q2); > Q2:Minimal; [[14, 8, 3]] Quantum code over GF(2^2) > > S1 := StabilizerCode(Q1); > S2 := StabilizerCode(Q2); > S2 subset S1; true > > S3 := PlotkinSum(SymplecticDual(S1), S2); > Q3 := QuantumCode(S3); > _ := MinimumWeight(Q3); > Q3:Minimal; [[28, 8, 6]] Quantum code over GF(2^2)