- IdealWithFixedBasis
- Idempotent
- IdempotentActionGenerators
- IdempotentGenerators
- IdempotentPositions
- Idempotents
- AutomorphismGroupMatchingIdempotents(A) : AlgBas -> AlgBas, ModMatFldElt
- CentralIdempotents(A) : AlgAssV -> SeqEnum, SeqEnum
- ChangeIdempotents(A, S) : AlgBas, SeqEnum -> AlgBas, Map
- GradedAutomorphismGroupMatchingIdempotents(A) : AlgBas -> GrpMat, SeqEnum, SecEnum
- Idempotents(I, J) : RngOrdIdl, RngOrdIdl -> BoolElt, RngOrdElt, RngOrdElt
- PrimitiveIdempotents(A) : AlgMat -> SeqEnum
- RanksOfPrimitiveIdempotents(A) : AlgMat -> SeqEnum
- idempotents
- Identical
- AreIdentical(u, v: parameters) : GrpBrdElt, GrpBrdElt -> BoolElt
- IdenticalAmbientSpace(X,Y) : Sch, Sch -> BoolElt
- IsIdentical(A, B) : LatNF, LatNF -> BoolElt
- IsIdentical(R, F) : RngDiff, RngDiff -> BoolElt
- IsIdentical(R, F) : RngDiffOp, RngDiffOp -> BoolElt
- IsIdentical(f, g) : RngSerElt, RngSerElt -> BoolElt
- IsIdenticalPresentation(G, H) : GrpGPC, GrpGPC -> BoolElt
- IsIdenticalPresentation(G, H) : GrpPC, GrpPC -> BoolElt
- IdenticalAmbientSpace
- Identification
- identification
- identification-abstract
- identification-permutation
- IdentificationNumber
- identifier
- identifier-class
- Identifiers
- Identify
- identify
- IdentifyAlmostSimpleGroup
- IdentifyGroup
- IdentifyGroup4P
- IdentifyOneCocycle
- IdentifySimple
- IdentifyTwoCocycle
- IdentifyZeroCocycle
- Identity
- Id(J) : JacHyp -> JacHypPt
- Identity(J) : JacHyp -> JacHypPt
- J ! 0 : JacHyp, RngIntElt -> JacHypPt
- Id(R) : AlgChtr -> AlgChtrElt
- Id(R) : AlgChtr -> AlgChtrElt
- Identity(S) : DiffCrv -> DiffCrvElt
- Identity(D) : DiffFun -> DiffFunElt
- Identity(D) : DivCrv -> DivCrvElt
- Identity(G) : DivFun -> DivFunElt
- Identity(G) : Grp -> GrpElt
- Identity(G) : Grp -> GrpPermElt
- Identity(A) : GrpAb -> GrpAbElt
- Identity(G) : GrpAtc -> GrpAtcElt
- Identity(A) : GrpAutCrv -> GrpAutCrvElt
- Identity(A) : GrpAuto -> GrpAutoElt
- Identity(G) : GrpBB -> GrpBBElt
- Identity(B) : GrpBrd -> GrpBrdElt
- Identity(G) : GrpFP -> GrpFPElt
- Identity(G) : GrpGPC -> GrpGPCElt
- Identity(G) : GrpLie -> GrpLieElt
- Identity(G) : GrpMat -> GrpMatElt
- Identity(G) : GrpPC -> GrpPCElt
- Identity(G) : GrpPSL2 -> GrpPSL2Elt
- Identity(G) : GrpRWS -> GrpRWSElt
- Identity(G) : GrpSLP -> GrpSLPElt
- Identity(M) : MonRWS -> MonRWSElt
- Identity(N) : Nfd -> NfdElt
- Identity(Q) : QuadBin -> QuadBinElt
- IdentityAutomorphism(L) : AlgLie -> Map
- IdentityAutomorphism(G) : GrpLie -> GrpLieAutoElt
- IdentityAutomorphism(A) : Sch -> AutSch
- IdentityAutomorphism(X) : Sch -> MapAutSch
- IdentityFieldMorphism(F) : Fld -> Map
- IdentityHomomorphism(G) : Grp -> Map
- IdentityHomomorphism(G) : GrpPC -> Map
- IdentityIsogeny(E) : CrvEll -> Map
- IdentityMap(E) : CrvEll -> Map
- IdentityMap(A) : ModAbVar -> MapModAbVar
- IdentityMap(R) : RootDtm -> Map
- IdentityMap(X) : Sch -> MapSch
- IdentityMap(L) : TorLat -> TorLatMap
- IdentityMatrix (S, n) : SpRng, RngIntElt -> SpMat
- IdentitySparseMatrix(R, n) : Rng, RngElt -> MtrxSprs
- IdentityTransformation(n, R) : RngIntElt, Rng -> TransG1
- IsId(g) : GrpElt -> BoolElt
- IsId(g) : GrpPermElt -> BoolElt
- IsId(w) : GrpRWSElt -> BoolElt
- IsId(w) : GrpRWSElt -> BoolElt
- IsId(w) : MonRWSElt -> BoolElt
- IsId(P) : PtEll -> BoolElt
- IsIdentity(u) : GrpAbElt -> BoolElt
- IsIdentity(w, D1) : GrpFPElt, Rec -> BoolElt, GrpFPElt, SeqEnum, SeqEnum
- IsIdentity(g) : GrpGPCElt -> BoolElt
- IsIdentity(g) : GrpMatElt -> BoolElt
- IsIdentity(g) : GrpPCElt -> BoolElt
- IsIdentity(f) : Map -> BoolElt
- IsIdentity(u: parameters) : GrpBrdElt -> BoolElt
- IsIdentity(f) : QuadBinElt -> BoolElt
- IsZero(P) : JacHypPt -> BoolElt
- MinimalIdentity(A, S) : AlgBas, SeqEnum[AlgBasElt] -> AlgBasElt
- One(R) : RngDiff -> RngDiffElt
- ToricIdentityMap(X) : TorVar -> TorMap
V2.28, 13 July 2023