- DihedralGroup
- DihedralSubspace
- Dilog
- Dimension
- BestDimensionLinearCode(K, n, d) : FldFin, RngIntElt, RngIntElt -> Code
- BDLC(K, n, d) : FldFin, RngIntElt, RngIntElt -> Code, BoolElt
- BrandtModuleDimension(D, N) : RngElt, RngElt -> RngIntElt
- BrandtModuleDimension(D, N) : RngIntElt, RngIntElt -> RngIntElt
- CohomologicalDimension(G, M, i) : GrpFin, ModRng, RngIntElt -> RngIntElt
- CohomologicalDimension(G, M, i) : GrpPerm, ModRng, RngIntElt -> RngIntElt
- CohomologicalDimension(G, M, n) : GrpPerm, ModRng, RngIntElt -> RngIntElt
- CohomologicalDimension(CM, n) : ModCoho, RngIntElt -> RngIntElt
- CohomologicalDimension(CM, n) : ModCoho, RngIntElt -> RngIntElt
- CohomologicalDimension(M, n) : ModGrp, n -> RngIntElt
- CohomologicalDimension(M, n) : ModGrp, n -> RngIntElt
- CohomologyDimension(M,r,n) : ModMPolGrd, RngIntElt, RngIntElt -> RngIntElt
- CohomologyDimension(S, r, n) : ShfCoh, RngIntElt, RngIntElt -> RngIntElt
- Degree(O) : AlgAssVOrd -> RngIntElt
- Degree(A) : ArtRep -> RngIntElt
- Degree(A) : GalRep -> RngIntElt
- Dimension(B) : AlgBas -> RngIntElt
- Dimension(A) : AlgFP -> RngIntElt
- Dimension(A) : AlgGen -> RngIntElt
- Dimension(L) : AlgKac -> Infty
- Dimension(L) : AlgLie -> RngIntElt
- Dimension(L) : AlgLieExtr -> RngIntElt
- Dimension(R) : AlgMatV -> RngIntElt
- Dimension(A) : AnHcJac -> RngIntElt
- Dimension(C) : Code -> FldRatElt
- Dimension(C) : Code -> RngIntElt
- Dimension(D) : DivCrvElt -> RngIntElt
- Dimension(D) : DivFunElt -> RngIntElt
- Dimension(C) : GRCrvS -> RngIntElt
- Dimension(G) : GrpLie -> RngIntElt
- Dimension(W) : GrpPermCox -> RngIntElt
- Dimension(p) : GRPtS -> RngIntElt
- Dimension(X) : GRSch -> RngIntElt
- Dimension(H) : HilbSpc -> RngIntElt
- Dimension(H) : HomModAbVar -> RngIntElt
- Dimension(J) : JacHyp -> RngIntElt
- Dimension(L) : Lat -> RngIntElt
- Dimension(L) : LinearSys -> RngIntElt
- Dimension(A) : ModAbVar -> RngIntElt
- Dimension(H) : ModAbVarHomol -> RngIntElt
- Dimension(M) : ModAlg -> RngIntElt
- Dimension(M): ModAlg -> RngIntElt
- Dimension(M) : ModBrdt -> RngIntElt
- Dimension(CM) : ModCoho -> RngIntElt
- Dimension(M) : ModDed -> RngIntElt
- Dimension(M) : ModFrm -> RngIntElt
- Dimension(M) : ModFrmBianchi -> RngIntElt
- Dimension(M) : ModFrmHil -> RngIntElt
- Dimension(M) : ModSS -> RngIntElt
- Dimension(V) : ModTupFld -> RngIntElt
- Dimension(V) : ModTupFld -> RngIntElt
- Dimension(D) : OMDiv -> RngIntElt
- Dimension(D) : PhiMod -> RngIntElt
- Dimension(pm) : PMat -> RngIntElt
- Dimension(I) : RngMPol -> RngIntElt, [ RngIntElt ]
- Dimension(I) : RngMPolLoc -> RngIntElt, [ RngIntElt ]
- Dimension(Q) : RngMPolRes -> RngIntElt
- Dimension(R) : RootStr -> RngIntElt
- Dimension(R) : RootSys -> RngIntElt
- Dimension(X) : Sch -> RngIntElt
- Dimension(X) : SmpCpx -> RngIntElt
- Dimension (S) : SpSpc -> RngIntElt
- Dimension(e) : SubModLatElt -> RngIntElt
- Dimension(G) : SymGenLoc -> RngIntElt
- Dimension(T) : TenSpc -> RngIntElt
- Dimension(C) : TorCon -> RngIntElt
- Dimension(L) : TorLat -> RngIntElt
- DimensionByFormula(M) : ModFrm -> RngIntElt
- DimensionByFormula(N, k) : RngIntElt, FldRatElt -> RngIntElt
- DimensionCuspForms(eps, k) : GrpDrchElt, RngIntElt -> RngIntElt
- DimensionCuspFormsGamma0(N, k) : RngIntElt, RngIntElt -> RngIntElt
- DimensionCuspFormsGamma1(N, k) : RngIntElt, RngIntElt -> RngIntElt
- DimensionNewCuspFormsGamma0(N, k) : RngIntElt, RngIntElt -> RngIntElt
- DimensionNewCuspFormsGamma1(N, k) : RngIntElt, RngIntElt -> RngIntElt
- DimensionOfCentreOfEndomorphismRing(G) : GrpMat -> RngIntElt
- DimensionOfCentreOfEndomorphismRing(L) : Lat -> RngIntElt
- DimensionOfEndomorphismRing(G) : GrpMat -> RngIntElt
- DimensionOfEndomorphismRing(L) : Lat -> RngIntElt
- DimensionOfExactConstantField(F) : FldFunG -> RngIntElt
- DimensionOfFieldOfGeometricIrreducibility(C): Crv -> RngIntElt
- DimensionOfGlobalSections(S) : ShfCoh -> RngIntElt
- DimensionOfHomology(C, n) : ModCpx, RngIntElt -> RngIntElt
- DimensionOfKernelZ2(C) : CodeLinRng -> RngIntElt
- DimensionOfSpanZ2(C) : CodeLinRng -> RngIntElt
- H1Dimension(F, f, M) : GrpFP, Map, ModGrp -> RngIntElt
- H1Dimension(G, f, K) : GrpFP, Map, Rng -> RngIntElt
- H1DimensionSymmetricSquare(G, f, K) : GrpFP, Map, Rng -> RngIntElt
- HasFiniteDimension(Q) : RngMPolRes -> BoolElt
- HasPositiveH1Dimension(G, phi : parameters) : GrpFP, HomGrp -> BoolElt
- HomologicalDimension(M) : ModMPol -> RngInt
- HomologicalDimension(R) : RngInvar -> RngInt
- IsDimensionCompatible(B) : AlgBas -> Bool
- KodairaDimension(S) : Srfc -> RngIntElt
- LargestDimension(D) : DB -> RngIntElt
- LargestDimension(D) : DB -> RngIntElt
- LargestDimension(D) : DB -> RngIntElt
- LargestDimension(D) : DB -> RngIntElt
- LargestDimension(D): DB -> RngIntElt
- MinimalModelKodairaDimensionOne(S) : Srfc -> Map, Map
- MinimalModelKodairaDimensionZero(S) : Srfc -> Map
- OverDimension(V) : ModTupFld -> RngIntElt
- OverDimension(u) : ModTupFldElt -> RngIntElt
- OverDimension(M) : ModTupRng -> RngIntElt
- OverDimension(u) : ModTupRngElt -> RngIntElt
- PseudoDimension(C) : Code -> RngIntElt
- QuantumDimension(R, w) : RootDtm, ModTupRngElt -> SetMulti
- QuotientDimension(I) : RngMPol -> RngIntElt
- QuotientDimension(I) : RngMPol -> RngIntElt
- Rank(L) : LatNF -> RngIntElt
- RepresentationDimension(D) : LieRepDec -> RngIntElt
- RepresentationDimension(R, v) : RootDtm, SeqEnum -> RngIntElt
- RiemannRochDimension(D) : DivTorElt -> RngIntElt
- WeylDimension(R, w) : RootDtm, [ ] -> RngIntElt
V2.28, 13 July 2023