- sequence
- SequenceOfRadicalGenerators
- Sequences
- sequences
- sequences-degrees-and-types
- SequenceToElement
- SequenceToFactorization
- SequenceToInteger
- SequenceToList
- SequenceToMultiset
- SequenceToSet
- ser
- serext-simple
- Series
- AlgebraicPowerSeries(dp, ip, L, e) : RngUPolElt, RngMPolElt, Lat, RngIntElt -> RngPowAlgElt
- CharacteristicSeries(A) : GrpAuto -> SeqEnum
- ChiefSeries(G) : GrpAb -> [GrpAb]
- ChiefSeries(G) : GrpMat -> [ GrpMat ], [ <RngIntElt, RngIntElt, RngIntElt, RngIntElt> ]
- ChiefSeries(G) : GrpPC -> [GrpPC]
- ChiefSeries(G) : GrpPerm -> [ GrpPerm ], [ <RngIntElt, RngIntElt, RngIntElt, RngIntElt> ]
- CompositionSeries(A) : AlgGen -> [ AlgGen ], [ AlgGen ], AlgMatElt
- CompositionSeries(L) : AlgLie -> [ Alg ], [ AlgLie ], AlgMatElt
- CompositionSeries(G) : GrpPC -> [GrpPC]
- CompositionSeries(G, i) : GrpPC, RngIntElt -> [GrpPC]
- CompositionSeries(G) : GrpPerm -> [ GrpPerm ]
- CompositionSeries(M) : ModRng -> [ ModRng ], [ ModRng ], AlgMatElt
- CompositionTreeSeries(G) : Grp -> SeqEnum, List, List, List, BoolElt, []
- DerivedSeries(L) : AlgLie -> [ AlgLie ]
- DerivedSeries(G) : GrpAb -> [ GrpAb ]
- DerivedSeries(G) : GrpFin -> [ GrpFin ]
- DerivedSeries(G) : GrpGPC -> [GrpGPC]
- DerivedSeries(G) : GrpMat -> [ GrpMat ]
- DerivedSeries(G) : GrpPC -> [GrpPC]
- DerivedSeries(G) : GrpPerm -> [ GrpPerm ]
- DifferentialLaurentSeriesRing(C) : Fld -> RngDiff
- EhrhartSeries(P) : TorPol -> FldFunRatUElt
- Eigenform(M, prec) : ModSym, RngIntElt -> RngSerPowElt
- EisensteinSeries(M) : ModFrm -> List
- ElementaryAbelianSeries(G) : GrpAb -> [ GrpAb ]
- ElementaryAbelianSeries(G) : GrpPC -> [GrpPC]
- ElementaryAbelianSeries(G: parameters) : GrpMat -> [ GrpMat ]
- ElementaryAbelianSeries(G: parameters) : GrpPerm -> [ GrpPerm ]
- ElementaryAbelianSeriesCanonical(G) : GrpMat -> [ GrpMat ]
- ElementaryAbelianSeriesCanonical(G) : GrpPC -> [GrpPC]
- ElementaryAbelianSeriesCanonical(G) : GrpPerm -> [ GrpPerm ]
- EvaluateByPowerSeries(m, P) : MapSch, Pt -> Pt
- EvaluationPowerSeries(s, nu, v) : Tup, SeqEnum, SeqEnum -> RngPowAlgElt
- FittingSeries(G) : GrpGPC -> [GrpGPC]
- R`HilbertSeries
- HilbertSeries(D) : DivTor -> FldFunRatUElt
- HilbertSeries(X) : GRSch -> FldFunRatUElt
- HilbertSeries(M) : ModMPol -> FldFunElt
- HilbertSeries(M, p) : ModMPol, RngIntElt -> RngSerLaurElt
- HilbertSeries(R) : RngInvar -> FldFunUElt
- HilbertSeries(I) : RngMPol -> FldFunUElt
- HilbertSeries(I, p) : RngMPol, RngIntElt -> RngSerLaurElt
- HilbertSeries(p,V) : RngUPolElt, SeqEnum -> FldFunRatUElt
- HilbertSeriesApproximation(R, n) : RngInvar, RngIntElt -> RngSerLaurElt
- HilbertSeriesMultipliedByMinimalDenominator(p,V) : RngUPolElt, SeqEnum -> RngUPolElt, SeqEnum
- HypergeometricSeries(a,b,c, z) : RngElt, RngElt, RngElt, RngElt -> RngElt
- HypergeometricSeries(a,b,c, z) : RngElt, RngElt, RngElt, RngElt -> RngElt
- IsDifferentialLaurentSeriesRing(R) : Rng -> BoolElt
- IsDifferentialSeriesRing(R) : Rng -> BoolElt
- IsEisensteinSeries(f) : ModFrmElt -> BoolElt
- IsEisensteinSeries(f) : ModFrmElt -> BoolElt
- IsPrincipalSeries(pi) : RepLoc -> BoolElt
- JenningsSeries(G) : GrpFin -> [ GrpFin ]
- JenningsSeries(G) : GrpMat -> [ GrpMat ]
- JenningsSeries(G) : GrpPC -> [GrpPC]
- JenningsSeries(G) : GrpPerm -> [ GrpPerm ]
- LMGChiefSeries(G) : GrpMat[FldFin] -> SeqEnum
- LMGCompositionSeries(G) : GrpMat[FldFin] -> SeqEnum
- L`SeriesPrinting : RngPad -> BoolElt
- LaurentSeriesRing(L) : AlgKac -> RngSerLaur
- LaurentSeriesRing(R) : Rng -> RngSerLaur
- LazyPowerSeriesRing(C, n) : Rng, RngIntElt -> RngPowLaz
- LazySeries(R, f) : RngPowLaz, RngMPolElt -> RngPowLazElt
- LowerCentralSeries(L) : AlgLie -> [ AlgLie ]
- LowerCentralSeries(G) : GrpFin -> [ GrpFin ]
- LowerCentralSeries(G) : GrpGPC -> [GrpGPC]
- LowerCentralSeries(G) : GrpMat -> [ GrpMat ]
- LowerCentralSeries(G) : GrpPC -> [GrpPC]
- LowerCentralSeries(G) : GrpPerm -> [ GrpPerm ]
- MolienSeries(G) : GrpMat -> FldFunUElt
- MolienSeriesApproximation(G, n) : GrpPerm, RngIntElt -> RngSerLaurElt
- OverconvergentHeckeSeries(p, N, k, m) : RngIntElt, RngIntElt, RngIntElt, RngIntElt -> RngUPolElt
- OverconvergentHeckeSeriesDegreeBound(p, N, k, m) : RngIntElt, RngIntElt, RngIntElt, RngIntElt -> RngIntElt
- PolyToSeries(s) : RngMPolElt -> RngPowAlgElt
- PowerSeriesRing(R) : Rng -> RngSerPow
- PrincipalSeriesParameters(pi) : RepLoc -> GrpDrchElt, GrpDrchElt
- PuiseuxSeriesRing(R) : Rng -> RngSerPuis
- SocleSeries(G) : GrpPerm -> [ GrpPerm ]
- SocleSeries(M) : ModRng -> [ ModRng ], [ ModRng ], AlgMatElt
- SubnormalSeries(G, H) : GrpAb, GrpAb -> [ GrpAb ]
- SubnormalSeries(G, H) : GrpFin, GrpFin -> [ GrpFin ]
- SubnormalSeries(G, H) : GrpMat, GrpMat -> [ GrpMat ]
- SubnormalSeries(G, H) : GrpPC, GrpPC -> [GrpPC]
- SubnormalSeries(G, H) : GrpPerm, GrpPerm -> [ GrpPerm ]
- ThetaSeries(L, n) : Lat, RngIntElt -> RngSerElt
- ThetaSeries(x, y, prec) : ModBrdtElt, ModBrdtElt, RngIntElt -> RngSerElt
- ThetaSeries(f, n) : QuadBinElt, RngIntElt -> RngSerElt
- ThetaSeriesIntegral(L, n) : Lat, RngIntElt -> RngSerElt
- ThetaSeriesModularForm(L) : Lat -> ModFrmElt
- ThetaSeriesModularFormSpace(L) : Lat -> ModFrm
- UpperCentralSeries(L) : AlgLie -> [ AlgLie ]
- UpperCentralSeries(G) : GrpAb -> [ GrpAb ]
- UpperCentralSeries(G) : GrpFin -> [ GrpFin ]
- UpperCentralSeries(G) : GrpGPC -> [GrpGPC]
- UpperCentralSeries(G) : GrpMat -> [ GrpMat ]
- UpperCentralSeries(G) : GrpPC -> [GrpPC]
- UpperCentralSeries(G) : GrpPerm -> [ GrpPerm ]
- WeierstrassSeries(z, t) : RngSerElt, FldComElt -> RngSerElt
- WeierstrassSeries(z, F) : RngSerElt, QuadBinElt -> RngSerElt
- WeierstrassSeries(z, f) : RngSerElt, QuadBinElt -> RngSerElt
- WeierstrassSeries(z, q) : RngSerElt, RngSerElt -> RngSerElt
- WeierstrassSeries(z, L) : RngSerElt, SeqEnum -> RngSerElt
- pCentralSeries(G, p) : GrpFin, RngIntElt -> [ GrpFin ]
- pCentralSeries(G, p) : GrpMat, RngIntElt -> [ GrpMat ]
- pCentralSeries(G, p) : GrpPC, RngIntElt -> [GrpPC]
- pCentralSeries(G, p) : GrpPerm, RngIntElt -> [ GrpPerm ]
- qExpansion(f) : ModFrmElt -> RngSerPowElt
- AlgLie_Series (Example H107E41)
- GrpMatGen_Series (Example H65E31)
- GrpPerm_Series (Example H64E30)
V2.28, 13 July 2023