- sylow_ex
- SylowBasis
- SylowSubgroup
- Sylow(G, p) : GrpFin, RngIntElt -> GrpFin
- SylowSubgroup(G, p) : GrpFin, RngIntElt -> GrpFin
- SylowSubgroup(G, p) : GrpLie, RngIntElt -> List
- SylowSubgroup(G, p) : GrpMat, RngIntElt -> GrpMat
- SylowSubgroup(G, p) : GrpPC, RngIntElt -> GrpPC
- SylowSubgroup(G, p) : GrpPerm, RngIntElt -> GrpPerm
- SylowSubgroup(G, p : parameters) : GrpAb, RngIntElt -> GrpAb
- SylowSystem
- Sym
- sym
- Sym_Bi_Linear
- Symbol
- BiquadraticResidueSymbol(a, b) : RngQuadElt, RngQuadElt -> RngQuadElt
- ConvertFromManinSymbol(M, x) : ModSym, Tup -> ModSymElt
- DisplayFareySymbolDomain(FS,file) : SymFry, MonStgElt -> SeqEnum
- FareySymbol(G) : GrpPSL2 -> SymFry
- GenusSymbol(L, p) : LatNF, RngOrdIdl -> SeqEnum, Any
- HilbertSymbol(a, b, p) : FldRatElt, FldRatElt, RngIntElt -> RngIntElt
- HilbertSymbol(a, b, p : parameters) : FldRatElt, FldRatElt, RngIntElt -> RngIntElt
- JacobiSymbol(n, m) : RngIntElt, RngIntElt -> RngIntElt
- JacobiSymbol(a,b) : RngUPol, RngUPol -> RngIntElt
- KodairaSymbol(E, p) : CrvEll, RngIntElt -> SymKod
- KodairaSymbol(s) : MonStgElt -> SymKod
- KroneckerSymbol(n, m) : RngIntElt, RngIntElt -> RngIntElt
- LegendreSymbol(n, m) : RngIntElt, RngIntElt -> RngIntElt
- ManinSymbol(x) : ModSymElt -> SeqEnum
- ModularSymbolToIntegralHomology(A, x) : ModAbVar, SeqEnum -> ModTupFldElt
- ModularSymbolToRationalHomology(A, x) : ModAbVar, ModSymElt -> ModTupFldElt
- NormResidueSymbol(a, b, p) : FldRatElt, FldRatElt, RngIntElt -> RngIntElt
- symbol
- Symbols
- Farey Symbols and Fundamental Domains (CONGRUENCE SUBGROUPS OF PSL2(R))
- DefiningModularSymbolsSpace(pi) : RepLoc -> ModSym
- IsAttachedToModularSymbols(A) : ModAbVar -> BoolElt
- IsAttachedToModularSymbols(H) : ModAbVarHomol -> BoolElt
- KodairaSymbols(E) : CrvEll -> [ <SymKod, RngIntElt> ]
- KodairaSymbols(E) : CrvEll -> [ SymKod ]
- ModularSymbols(E) : CrvEll -> ModSym
- ModularSymbols(eps, k) : GrpDrchElt, RngIntElt -> ModSym
- ModularSymbols(eps, k, sign) : GrpDrchElt, RngIntElt, RngIntElt -> ModSym
- ModularSymbols(A) : ModAbVar -> SeqEnum
- ModularSymbols(H) : ModAbVarHomol -> SeqEnum
- ModularSymbols(M) : ModFrm -> SeqEnum
- ModularSymbols(M, sign) : ModFrm, RngIntElt -> ModSym
- ModularSymbols(M, N') : ModSym, RngIntElt -> ModSym
- ModularSymbols(s, sign) : MonStgElt, RngIntElt -> ModSym
- ModularSymbols(M : parameters) : ModSS -> ModSym
- ModularSymbols(M, sign : parameters) : ModSS, RngIntElt -> ModSym
- ModularSymbols(N) : RngIntElt -> ModSym
- ModularSymbols(N, k) : RngIntElt, RngIntElt -> ModSym
- ModularSymbols(N, k, F) : RngIntElt, RngIntElt, Fld -> ModSym
- ModularSymbols(N, k, F, sign) : RngIntElt, RngIntElt, Fld, RngIntElt -> ModSym
- ModularSymbols(N, k, sign) : RngIntElt, RngIntElt, RngIntElt -> ModSym
- symbols
- Symetric
- Symmetric
- Symmetric Group Character (SYMMETRIC FUNCTIONS)
- AlternatingOrSymmetricElementToWord(G, g): Grp, GrpElt -> BoolElt, GrpSLPElt
- AlternatingOrSymmetricElementToWord(G, g): Grp, GrpElt -> BoolElt, GrpSLPElt
- DecomposeSymmetricPower(R, n, w) : RootDtm, RngIntElt, [ ] -> [ ModTupRngElt ], [ RngIntElt ]
- DensityEvolutionBinarySymmetric(v, c, p) : RngIntElt, RngIntElt, FldReElt -> BoolElt
- ElementarySymmetricPolynomial(P, k) : RngMPol, RngIntElt -> RngMPolElt
- ElementarySymmetricPolynomial(P, k) : RngMPol, RngIntElt -> RngMPolElt
- ElementarySymmetricPolynomial(R, i) : RngSLPol, RngIntElt -> RngSLPolElt
- H1DimensionSymmetricSquare(G, f, K) : GrpFP, Map, Rng -> RngIntElt
- InvariantForms(G) : GrpMat -> [ AlgMatElt ]
- InvariantForms(G, n) : GrpMat, RngIntElt -> [ AlgMatElt ]
- IsSymmetric(a) : AlgMatElt -> BoolElt
- IsSymmetric(D) : Dsgn -> BoolElt
- IsSymmetric(G) : GrphUnd -> BoolElt
- IsSymmetric(G) : GrpPerm -> BoolElt
- IsSymmetric(A) : Mtrx -> BoolElt
- IsSymmetric(A) : MtrxSprs -> BoolElt
- IsSymmetric(f) : RngMPolElt -> BoolElt, RngMPolElt
- IsSymmetric(f) : RngMPolElt -> BoolElt, RngMPolElt
- IsSymmetric(T) : TenSpc -> BoolElt
- IsSymmetric(T) : TenSpcElt -> BoolElt
- LDPCBinarySymmetricThreshold(v, c) : RngIntElt, RngIntElt -> FldReElt
- NumberOfInvariantForms(G) : GrpMat -> RngIntElt, RngIntElt
- NumberOfSymmetricForms(L) : Lat -> RngIntElt
- PowerSumToElementarySymmetric(I) : [] -> []
- RandomSymmetricTensor(R, d, n, c) : Rng, RngIntElt, RngIntElt, RngIntElt -> TenSpcElt
- RecogniseAlternatingOrSymmetric(G : parameters) : Grp, RngIntElt -> BoolElt, Map, Map, Map, Map, BoolElt
- RecogniseAlternatingOrSymmetric(G : parameters) : Grp, RngIntElt -> BoolElt, Map, Map, Map, Map, BoolElt
- RecogniseSymmetric(G, n: parameters) : Grp, RngIntElt -> BoolElt, Map, Map, Map, Map, BoolElt
- RecogniseSymmetric(G, n: parameters) : Grp, RngIntElt -> BoolElt, Map, Map, Map, Map, BoolElt
- StandardSymmetricForm(n, K) : RngIntElt, Fld -> AlgMatElt
- Sym(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
- Sym(n) : RngIntElt -> GrpPerm
- Sym(X) : Set -> GrpPerm
- SymmetricBilinearForm(G: parameters) : GrpMat -> BoolElt, AlgMatElt, MonStgElt [,SeqEnum]
- SymmetricBilinearForm(f) : RngMPolElt -> ModMatRngElt
- SymmetricCharacter(sf): AlgSymElt -> AlgChtrElt
- SymmetricCharacter(pa) : SeqEnum -> AlgChtrElt
- SymmetricCharacterTable(d) : RngIntElt -> SeqEnum
- SymmetricCharacterTable(n) : RngIntElt -> SeqEnum
- SymmetricCharacterValue(pa, pe) : SeqEnum, GrpPermElt -> RngElt
- SymmetricCotensorSpace(V, n) : ModTupFld, RngIntElt -> TenSpc
- SymmetricElementToWord (G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
- SymmetricElementToWord (G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
- SymmetricFPGroup(n) : RngIntElt -> GrpFP
- SymmetricForms(L) : Lat -> [ AlgMatElt ]
- SymmetricForms(L, n) : Lat, RngIntElt -> [ AlgMatElt ]
- SymmetricFunctionAlgebra(R) : Rng -> AlgSym
- SymmetricFunctionAlgebraElementary(R) : Rng -> AlgSym
- SymmetricFunctionAlgebraHomogeneous(R) : Rng -> AlgSym
- SymmetricFunctionAlgebraMonomial(R) : Rng -> AlgSym
- SymmetricFunctionAlgebraPower(R) : Rng -> AlgSym
- SymmetricFunctionAlgebraSchur(R) : Rng -> AlgSym
- SymmetricGroup(C, n) : Cat, RngIntElt -> GrpFin
- SymmetricMatrix(R, Q) : Rng, [ RngElt ] -> Mtrx
- SymmetricMatrix(f) : RngMPolElt -> Mtrx
- SymmetricMatrix(Q) : [ RngElt ] -> Mtrx
- SymmetricNormalizer(G) : GrpPerm -> GrpPerm
- SymmetricPower(a,r) : AlgMatElt, RngIntElt -> AlgMatElt
- SymmetricPower(HS, m) : HodgeStruc, RngIntElt -> HodgeStruc
- SymmetricPower(L, m) : LSer, RngIntElt -> LSer
- SymmetricPower(V, n) : ModAlg, RngIntElt -> ModAlg, Map
- SymmetricPower(V, n) : ModAlg, RngIntElt -> ModAlg, Map
- SymmetricPower(L, m) : RngDiffOpElt, RngIntElt -> RngDiffOpElt
- SymmetricPower(R, n, v) : RootDtm, RngIntElt, ModTupRngElt -> LieRepDec
- SymmetricRepresentation(B) : GrpBrd -> Map
- SymmetricRepresentation(pa, pe) : SeqEnum, GrpPermElt -> AlgMatElt
- SymmetricRepresentationOrthogonal(pa, pe) : SeqEnum,GrpPermElt -> AlgMatElt
- SymmetricRepresentationSeminormal(pa, pe) : SeqEnum,GrpPermElt -> AlgMatElt
- SymmetricSpace(T) : TenSpc -> TenSpc, Map
- SymmetricSquare(a) : AlgMatElt -> AlgMatElt
- SymmetricSquare(L) : Lat -> Lat
- SymmetricSquare(M) : ModMat -> ModMat
- SymmetricTensor(T) : TenSpcElt -> TenSpcElt
- SymmetricToQuadraticForm(J) : AlgMatElt -> AlgMatElt
- SymmetricWeightEnumerator(C): Code -> RngMPolElt
V2.28, 13 July 2023