- RepeatPartition
- Repetition
- RepetitionCode
- Replace
- ReplaceRelation(G, s, r) : GrpFP, RelElt, RelElt -> GrpFP
- ReplaceRelation(G, i, g) : GrpFP, RngIntElt, GrpFPElt -> GrpFP
- ReplaceRelation(G, i, r) : GrpFP, RngIntElt, RelElt -> GrpFP
- ReplaceRelation(S, r1, r2) : SgpFP, Rel, Rel -> SgpFP
- ReplaceRelation(S, i, r) : SgpFP, RngIntElt, Rel -> SgpFP
- GrpFP_Replace (Example H78E8)
- ReplaceRelation
- ReplaceRelation(G, s, r) : GrpFP, RelElt, RelElt -> GrpFP
- ReplaceRelation(G, i, g) : GrpFP, RngIntElt, GrpFPElt -> GrpFP
- ReplaceRelation(G, i, r) : GrpFP, RngIntElt, RelElt -> GrpFP
- ReplaceRelation(S, r1, r2) : SgpFP, Rel, Rel -> SgpFP
- ReplaceRelation(S, i, r) : SgpFP, RngIntElt, Rel -> SgpFP
- Replication
- ReplicationNumber
- reports
- Represent
- Representation
- ProductRepresentation(D, E) : LieRepDec, LieRepDec -> LieRepDec
- D * E : LieRepDec, LieRepDec -> LieRepDec
- AbsoluteRepresentation(G) : GrpMat -> GrpMat, Map
- AbsoluteRepresentationMatrix(a) : FldAlgElt -> AlgMatElt
- AbsoluteRepresentationMatrix(a) : FldNumElt -> NumMatElt
- AddRepresentation(~D, E, c) : LieRepDec, LieRepDec, RngIntElt ->
- AddRepresentation(~D, v, c) : LieRepDec, ModTupRngElt, RngIntElt ->
- AdjointRepresentation(L) : AlgLie -> Map
- AdjointRepresentation(G) : GrpLie -> Map, AlgLie
- AdjointRepresentation(G) : GrpLie -> Map, AlgLie
- AdjointRepresentationDecomposition(R) : RootDtm -> LieRepDec
- ArtinRepresentation(ch) : GrpDrchElt -> ArtRep
- ArtinRepresentation(H, t) : HypGeomData, RngQZElt -> ArtRep
- BurauRepresentation(B) : GrpBrd -> Map
- BurauRepresentation(B, p) : GrpBrd, RngIntElt -> Map
- CanonicalFactorRepresentation(u: parameters) : GrpBrdElt -> Tup
- CartierRepresentation(C) : Crv -> AlgMatElt, SeqEnum[DiffCrvElt]
- CartierRepresentation(F) : FldFunG -> AlgMatElt, SeqEnum[DiffFunElt]
- ChangeRepresentationType(A, Rep) : AlgGrp, MonStgElt -> AlgGrp, Map
- CosetAction(G, H) : Grp, Grp -> Hom(Grp), GrpPerm, Grp
- CosetAction(G, H: parameters) : Grp, Grp -> Hom(Grp), GrpPerm, GrpPerm
- CosetTableToRepresentation(G, T): GrpFP, Map -> Map, GrpPerm, Grp
- FuchsianMatrixRepresentation(A) : AlgQuat -> Map
- GaloisRepresentation(A,p) : ArtRep,RngIntElt -> GalRep
- GaloisRepresentation(E) : CrvEll -> GalRep
- GaloisRepresentation(E,p) : CrvEll,RngIntElt -> GalRep
- GaloisRepresentation(E,P) : CrvEll,RngOrdIdl -> GalRep
- GaloisRepresentation(C,P) : CrvHyp[FldNum],RngOrdIdl -> GalRep
- GaloisRepresentation(C) : CrvHyp[FldPad] -> GalRep
- GaloisRepresentation(C,p) : CrvHyp[FldRat], RngIntElt -> GalRep
- GaloisRepresentation(chi,p) : GrpDrchElt,RngIntElt -> GalRep
- GaloisRepresentation(f,p) : ModFrmElt,RngIntElt -> GalRep
- GaloisRepresentation(pi) : RepLoc -> GalRep
- HighestWeightRepresentation(L, w) : AlgLie, [ ] -> UserProgram
- HighestWeightRepresentation(U, w) : AlgQUE, SeqEnum -> UserProgram
- HighestWeightRepresentation(G, v) : GrpLie, . -> Map
- HighestWeightRepresentation(G, v) : GrpLie, . -> Map
- IrreducibleHighestWeightRepresentation(G,w) : GrpLie, SeqEnum -> Map
- IsInArtinSchreierRepresentation(K) : FldFun -> BoolElt, FldFunElt
- IsInKummerRepresentation(K) : FldFun -> BoolElt, FldFunElt
- LeftRepresentationMatrix(e) : AlgAssVOrdElt -> AlgMatElt
- LieRepresentationDecomposition(R, v) : RootDtm, ModTupRngElt -> LieRepDec
- LieRepresentationDecomposition(R, Wt, Mp) : RootDtm, SeqEnum, SeqEnum -> LieRepDec
- MatrixRepresentation(A) : AlgQuat -> Map
- MatrixRepresentation(A) : GrpAutCrv -> Grpmat, Map, SeqEnum
- MinimalDegreePermutationRepresentation(G: parameters) : Grp -> Hom(Grp), GrpPerm
- MonodromyRepresentation(X): RieSrf -> SeqEnum
- OptimizedRepresentation(O) : AlgAssVOrd -> AlgQuat, Map
- OptimizedRepresentation(A) : AlgQuat -> AlgQuat, Map
- OptimizedRepresentation(A) : ArtRep -> ArtRep
- OptimizedRepresentation(F) : FldAlg -> FldAlg, Map
- OptimizedRepresentation(F) : FldNum -> FldNum, Map
- OptimizedRepresentation(O) : RngOrd -> BoolElt, RngOrd, Map
- OptimizedRepresentation(E) : RngSerExt -> RngSer, Map
- PermutationRepresentation(A) : GrpAutCrv -> GrpPerm, Map
- PermutationRepresentation(A) : GrpAuto -> Map, GrpPerm, SetIndx
- PermutationRepresentation(D, i: parameters): DB, RngIntElt -> Hom(Grp), GrpFP, GrpPerm
- PrimePowerRepresentation(x, k, a) : FldFunGElt, RngIntElt, FldFunGElt -> SeqEnum
- ProductRepresentation(a) : FldFunGElt -> [FldFunGElt], [RngIntElt]
- ProductRepresentation(a) : FldNumElt -> [ FldNumElt ], [ RngIntElt ]
- ProductRepresentation(D, E, R) : LieRepDec, LieRepDec, RootDtm -> LieRepDec
- ProductRepresentation(a) : RngOrdElt -> [ RngOrdElt ], [ RngIntElt ]
- ProductRepresentation(P, E) : [ FldAlgElt ], [ RngIntElt ] -> FldAlgElt
- ProductRepresentation(P, E) : [ FldNumElt ], [ RngIntElt ] -> FldNumElt
- ProductRepresentation(Q, S) : [FldFunGElt], [RngIntElt] -> FldFunGElt
- QuotientRepresentation(L) : RngLocA -> RngUPolRes
- RamifiedRepresentation(L) : RngLocA -> FldPad, Map
- RationalExtensionRepresentation(F) : FldFunG -> FldFun
- ReeIrreducibleRepresentation(F, twists : parameters) : FldFin, SeqEnum[RngIntElt] -> GrpMat
- RegularRepresentation(v) : AlgBasElt -> AlgMatElt
- RegularRepresentation(A : parameters) : AlgAss -> AlgMat, Map
- Representation(F) : FldInvar -> Mtrx
- Representation(g) : GrpAbGenElt -> [RngIntElt]
- Representation(M) : ModGrp -> Map(Hom)
- Representation(P) : RieSrfPt -> Tup
- Representation(R) : RngInvar -> Mtrx
- Representation(S, g) : SeqEnum, GrpAbGenElt -> [RngIntElt], RngIntElt
- RepresentationDimension(D) : LieRepDec -> RngIntElt
- RepresentationDimension(R, v) : RootDtm, SeqEnum -> RngIntElt
- RepresentationMatrix(a) : AlgAssVOrdElt -> AlgMatElt
- RepresentationMatrix(f) : AlgFPElt -> AlgMatElt
- RepresentationMatrix(a) : FldAlgElt -> AlgMatElt
- RepresentationMatrix(a) : FldFunGElt -> AlgMatElt
- RepresentationMatrix(a, R) : FldFunGElt, Rng -> AlgMatElt
- RepresentationMatrix(a) : FldNumElt -> NumMatElt
- RepresentationMatrix(a, M : parameters) : AlgAssElt, AlgAss -> AlgMatElt
- RepresentationMatrix(a) : RngLocAElt -> AlgMatElt
- RepresentationMatrix(f) : RngMPolResElt -> AlgMatElt
- RepresentationNumber(f, n) : QuadBinElt, RngIntElt -> RngIntElt
- RepresentationType(A) : AlgGrp -> MonStgElt
- SSGaloisRepresentation(E,K,w,P) : FldFin, RngSerLaur, SeqEnum, SeqEnum -> SSGalRep
- SSGaloisRepresentation(D) : PhiMod -> SSGalRep
- SSGaloisRepresentation(D) : PhiMod -> SSGalRep
- StandardLieRepresentation(t,r) : MonStgElt, RngIntElt -> SeqEnum, SeqEnum
- StandardRepresentation(L) : AlgLie -> Map
- StandardRepresentation(G) : GrpLie -> Map
- StandardRepresentation(G) : GrpLie -> Map
- SubfieldRepresentationCode(C, K) : Code, FldFin -> Code
- SubfieldRepresentationParityCode(C, K) : Code, FldFin -> Code
- SuzukiIrreducibleRepresentation(F, twists : parameters) : FldFin, SeqEnum[RngIntElt] -> GrpMat
- SymmetricRepresentation(B) : GrpBrd -> Map
- SymmetricRepresentation(pa, pe) : SeqEnum, GrpPermElt -> AlgMatElt
- SymmetricRepresentationOrthogonal(pa, pe) : SeqEnum,GrpPermElt -> AlgMatElt
- SymmetricRepresentationSeminormal(pa, pe) : SeqEnum,GrpPermElt -> AlgMatElt
- TrivialLieRepresentationDecomposition(R) : RootDtm -> LieRepDec
- TrivialRepresentation(L) : AlgLie -> Map
- TrivialRepresentation(G) : GrpLie -> Map
- UniversalHighWeightRepresentation(G,w) : GrpLie, SeqEnum -> Map,SeqEnum,SeqEnum
- UnramifiedRepresentation(K,dim,dimcomputed,CharPoly) : FldPad,RngIntElt,RngIntElt,RngUPolElt -> GalRep
- UnramifiedRepresentation(K,CharPoly) : FldPad,RngUPolElt -> GalRep
- UserRepresentation(g) : GrpAbGenElt -> [RngIntElt]
- WriteGModuleOver(M, K) : ModGrp, FldAlg -> ModGrp
- ZeroRepresentation(K) : FldPad -> GalRep
- ModAlg_Representation (Example H97E12)
- ModSym_Representation (Example H142E8)
V2.28, 13 July 2023