Examples

Example RepLoc_example1 (H148E3)

We consider a newform of weight 5 and level 7, whose local representation at 7 is principal series.
> S := CuspidalSubspace(ModularSymbols(Gamma1(7), 5, 1));
> newforms := NewformDecomposition(S);
> Eigenform(newforms[1], 15);
q + q^2 - 15*q^4 + 49*q^7 - 31*q^8 + 81*q^9 - 206*q^11 + 49*q^14 + O(q^15)
> pi := LocalComponent(newforms[1], 7);
> pi;
Ramified Principal Series Representation of GL(2,Q_7)
> chi := CentralCharacter(pi);
> Conductor(chi);
7
> parameters := PrincipalSeriesParameters(pi);
These are Dirichlet characters on Z/7Z (the trivial character and the character of order 2):
> Conductor(parameters[1]), Order(parameters[1]);
1 1
> Conductor(parameters[2]), Order(parameters[2]);
7 2
The principal series representation π is the induction up to GL2(Q7) of a character of the Borel subgroup inflated from a character of the diagonal group Q7 x x Q7 x . The restriction of this character to Z7 x x Z7 x gives the pair of Dirichlet characters above. We now compute the Galois representation.
> rho := WeilRepresentation(pi); rho;
2-dim Galois representation (2,0) with G=C2, I=C2, conductor 7^1 over Q7[40]
> IsAbelian(Group(rho));
true
The Weil representation is simply the sum of the two characters above (up to unramified twists), considered as characters of the Galois group of Q7 via local class field theory.
> Decomposition(rho);
[
1-dim trivial Galois representation 1 over Q7[40],
1-dim Galois representation (1,-1) with G=C2, I=C2, conductor 7^1 over Q7[40]
]

Example RepLoc_example2 (H148E4)

We consider a supercuspidal representation of conductor 121, associated to a newform of weight 2 and level 121.
> S := CuspidalSubspace(ModularSymbols(Gamma0(121), 2, 1));
> newforms := NewformDecomposition(S);
> newforms;
[
Modular symbols space for Gamma_0(121) of weight 2 and dimension 1
   over Rational Field,
Modular symbols space for Gamma_0(121) of weight 2 and dimension 1
   over Rational Field,
Modular symbols space for Gamma_0(121) of weight 2 and dimension 1
   over Rational Field,
Modular symbols space for Gamma_0(121) of weight 2 and dimension 1
   over Rational Field,
Modular symbols space for Gamma_0(121) of weight 2 and dimension 2
   over Rational Field
]
> Eigenform(newforms[2], 11);
q + q^2 + 2*q^3 - q^4 + q^5 + 2*q^6 - 2*q^7 - 3*q^8 + q^9 + q^10 + O(q^11)
> pi := LocalComponent(newforms[2], 11);
> pi;
Supercuspidal Representation of GL(2,Q_11)
This means the representation of the Weil group associated to pi is irreducible.
> Conductor(pi);
121
> W := CuspidalInducingDatum(pi);
> W;
GModule W of dimension 10 over Rational Field
W is a module over a group which is a quotient of GL2(Z11), namely GL2(Z/(11Z)). The representation π is induced from some extension of W to the open subgroup Q11 x GL2(Z11).
> Group(W);
MatrixGroup(2, IntegerRing(11)) of order 2^4 * 3 * 5^2 * 11
Generators:
[2 0]
[0 1]
[1 1]
[0 1]
[ 0 1]
[10 0]
> Group(W) eq GL(2, Integers(11));
true
> rho:=WeilRepresentation(pi);
This gives the Weil representation attached to π up to multiplication by an unramified twist.
> rho;
2-dim Galois representation (2,0,-1) with G=S3, I=C3, conductor 11^2
   over Q11[10]

Example RepLoc_example3 (H148E5)

We consider a supercuspidal representation of conductor 33, associated to a newform of weight 4 and level 27.
> S := CuspidalSubspace(ModularSymbols(Gamma0(27), 4, 1));
> newforms := NewformDecomposition(S);
> Eigenform(newforms[1], 13);
q + 3*q^2 + q^4 + 15*q^5 - 25*q^7 - 21*q^8 + 45*q^10 - 15*q^11 + O(q^13)
> pi:=LocalComponent(newforms[1], 3);
> pi;
Supercuspidal Representation of GL(2,Q_3)
> W:=CuspidalInducingDatum(pi);
> W;
GModule W of dimension 2 over Rational Field
> Group(W);
MatrixGroup(2, IntegerRing(9)) of order 2^2 * 3^5
Generators:
[1 1]
[0 1]
[2 0]
[0 1]
[1 0]
[0 2]
[1 0]
[3 1]
These matrices generate (topologically) the Iwahori subgroup of GL2(Z3) consisting of matrices which are upper-triangular modulo 3. W is an irreducible two-dimensional G-module. The representation π is induced from some extension of W to the normalizer of the Iwahori in GL2(Q3).
> E, chi:=AdmissiblePair(pi);
> E;
Totally ramified extension defined by the polynomial x^2 - 3
 over 3-adic ring mod 3^10
> E.1^2;
3
> chi(1+E.1);
-zeta_3 - 1
Note that chi can only be evaluated on units of E, so that chi(E.1) would result in an error.
> WeilRepresentation(pi);
2-dim Galois representation (2,0,-1) with G=S3, I=S3, conductor 3^3 over Q3[10]
V2.28, 13 July 2023